【題目】如圖,ABC中,∠C=90°,AB=5cm,BC=3cm,若動點P從點C開始,按C→A→B→C的路徑運動,且速度為每秒1cm,設(shè)出發(fā)的時間為t秒.

1若點P恰好在∠BAC的角平分線上,求t的值;

2)問t為何值時,BCP為等腰三角形?

3)另有一點Q,從點C開始,按C→B→A→C的路徑運動,且速度為每秒2cm,若P、Q兩點同時出發(fā),當P、Q中有一點到達終點時,另一點也停止運動.當t為何值時,直線PQABC的周長分成相等的兩部分?

【答案】(1);(23s5.4s、6s6.5s;(326

【解析】試題分析:(1)過PPEAB,設(shè)CP=2t,根據(jù)角平分線的性質(zhì)和勾股定理進行解答即可;

2)分類討論:當CP=CB時,BCP為等腰三角形,若點PAC上得t=3s),若點PAB上,則t=5.4s;當PC=PB時,BCP為等腰三角形,作PDBCD,根據(jù)等腰三角形的性質(zhì)得BD=CD,則可判斷PDABC的中位線,則AP=AB=,易得t=s);當BP=BC=3時,BCP為等腰三角形,則AP=AB-BP=2,易得t=6s);

(3)分兩種情況討論:當P點在AC上,QAB上,則PC=t,BQ=2t-3,t+2t-3+3=6;當P點在AB上,QAC上,則AC=t-4,AQ=2t-8,t-4+2t-8=6,分別求得t的值即可.

試題解析:(1)如圖1,過PPEAB,

∵點P恰好在∠BAC的角平分線上,且∠C=90°,AB=5cm,BC=3cm,

CP=EP,

∴△ACP≌△AEP(HL),

AC=4cm=AE,BE=5-4=1,

設(shè)CP=x,則BP=3-x,PE=x,

RtBEP中,BE2+PE2=BP2,

12+x2=(3-x)2

解得x=,

BP=3-=

CA+AB+BP=4+5+=,

t=÷1=s);

(2)如圖2,當CP=CB時,BCP為等腰三角形,

若點PCA上,則1t=3,

解得t=3(s);

如圖3,當BP=BC=3時,BCP為等腰三角形,

AP=AB-BP=2,

t=(4+2)÷1=6(s);

如圖4,若點PAB上,CP=CB=3,作CDABD,則根據(jù)面積法求得CD=,

RtBCD中,由勾股定理得,BD=

PB=2BD=

CA+AP=4+5-=5.4,

此時t=5.4÷1=5.4(s);

如圖5,當PC=PB時,BCP為等腰三角形,作PDBCD,則BD=CD,

PDABC的中位線,

AP=BP=AB=,

t=4+÷1=s);

綜上所述,t3s5.4s6ss時,BCP為等腰三角形;

(3)如圖6,當P點在AC上,QAB上,則PC=t,BQ=2t-3,

∵直線PQABC的周長分成相等的兩部分,

t+2t-3+3=6,

t=2(s);

如圖7,當P點在AB上,QAC上,則AP=t-4,AQ=2t-8,

∵直線PQABC的周長分成相等的兩部分,

t-4+2t-8=6,

t=6(s);

綜上所述,當t=26秒時,直線PQABC的周長分成相等的兩部分.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】一扇窗戶打開后,用窗鉤就可將窗戶固定,其幾何原理是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90,點D為AB邊上的一點,

(1)試說明:∠EAC=∠B ;(2)若AD=10,BD=24,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】① 如圖,由小正方形組成的L形圖中,用三種方法分別在圖中添一個小正方形使圖形成為軸對稱圖形:

② 如圖,在正方形網(wǎng)格上的一個△ABC.

⑴ 作△ABC關(guān)于直線MN的對稱圖形(不寫作法);

⑵ 以P為一個頂點作與△ABC全等的三角形(規(guī)定點P與點B對應,另兩頂點都在圖中網(wǎng)格交點處),則可作出 個三角形與△ABC全等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一張長為8cm,寬為6cm的矩形紙片上,現(xiàn)要剪下一個腰長為5cm的等腰三角形(要求:等腰三角形的一個頂點與矩形的一個頂點重合,其余的兩個頂點在矩形的邊上).則剪下的等腰三角形的面積為______cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩三角形的相似比為14,它們的周長之差為27 cm,則較小三角形的周長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩個相似三角形的對應邊分別是15cm25cm,它們的周長相差40cm,則這兩個三角形的周長分別是( 。

A.75cm,115cmB.60cm100cmC.85cm,125cmD.45cm,85cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一元二次方程x2+mx+2m=0的兩個實根分別為x1,x2,若x1+x2=1,則x1x2=______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形ABCD中,∠A:∠B:∠C=232,則∠D=(  )

A.36°B.108°C.72°D.60°

查看答案和解析>>

同步練習冊答案