【題目】如圖,在ABC中,以AB為直徑的⊙OAC于點(diǎn)M,弦MNBCAB于點(diǎn)E,且ME1,AM2AE

1)求證:BC是⊙O的切線;

2)求⊙O的半徑.

【答案】1)見解析;(2

【解析】

(1)欲證明BC是⊙O的切線,只需證明ABBC即可;

(2)連接OM,設(shè)O的半徑是r,在RtAEM中,OEAEOArME1,OMr,利用勾股定理即可求得.

1)證明:AME中,AM2ME1,AE,

AM2ME2+AE2

∴△AME是直角三角形,

∴∠AEM90°,

MNBC

∴∠ABC90°,

ABBC

AB為直徑,

BCO的切線;

2)解:連接OM,如圖,設(shè)O的半徑是r,

Rt△OEM中,OEAEOAr,ME1,OMr

OM2ME2+OE2,

r212+r2

解得r,

O的半徑為

故答案為:(1)證明見解析;(2)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線ly=x-x軸交于點(diǎn)B1,以OB1為邊長作等邊三角形A1OB1,過點(diǎn)A1A1B2平行于x軸,交直線l于點(diǎn)B2,以A1B2為邊長作等邊三角形A2A1B2,過點(diǎn)A2A2B3平行于x軸,交直線l于點(diǎn)B3,以A2B3為邊長作等邊三角形A3A2B3,…,按此規(guī)律進(jìn)行下去,則點(diǎn)A3的橫坐標(biāo)為______;點(diǎn)A2018的橫坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車分別從相距480kmAB兩地相向而行,乙車比甲車先出發(fā)1小時,并以各自的速度勻速行駛,途徑C地,甲車到達(dá)C地停留1小時,因有事按原路原速返回A地.乙車從B地直達(dá)A地,兩車同時到達(dá)A地.甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車出發(fā)所用的時間x(小時)的關(guān)系如圖,結(jié)合圖象信息解答下列問題:

1)乙車的速度是   千米/時,t  小時;

2)求甲車距它出發(fā)地的路程y與它出發(fā)的時間x的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

3)直接寫出乙車出發(fā)多長時間兩車相距120千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點(diǎn)M為二次函數(shù)y=﹣(xb2+4b+1圖象的頂點(diǎn),直線ymx+5分別交x軸正半軸,y軸于點(diǎn)A,B

1)判斷頂點(diǎn)M是否在直線y4x+1上,并說明理由.

2)如圖1,若二次函數(shù)圖象也經(jīng)過點(diǎn)AB,且mx+5>﹣(xb2+4b+1,根據(jù)圖象,寫出x的取值范圍.

3)如圖2,點(diǎn)A坐標(biāo)為(50),點(diǎn)MAOB內(nèi),若點(diǎn)C,y1),D,y2)都在二次函數(shù)圖象上,試比較y1y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知頂點(diǎn)為的拋物線經(jīng)過點(diǎn),點(diǎn).

(1)求拋物線的解析式;

(2)如圖1,直線軸相交于點(diǎn)軸相交于點(diǎn),拋物線與軸相交于點(diǎn),在直線上有一點(diǎn),若,求的面積;

(3)如圖2,點(diǎn)是折線上一點(diǎn),過點(diǎn)軸,過點(diǎn)軸,直線與直線相交于點(diǎn),連接,將沿翻折得到,若點(diǎn)落在軸上,請直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC與△AEF中,ABAE,BCEF,∠B=∠E,ABEFD.給出下列結(jié)論:AFC=∠C;DFBF;ADE∽△FDB;BFD=∠CAF.其中正確的結(jié)論是_____(填寫所有正確結(jié)論的序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,旗桿AB的頂端B在夕陽的余輝下落在一個斜坡上的點(diǎn)D處,某校數(shù)學(xué)課外興趣小組的同學(xué)正在測量旗桿的高度,在旗桿的底部A處測得點(diǎn)D的仰角為15°,AC=10米,又測得BDA=45°.已知斜坡CD的坡度為i=1:,求旗桿AB的高度(1.7,結(jié)果精確到個位).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=BC,∠ABC=90°,點(diǎn)D、E分別是邊AB、BC的中點(diǎn),點(diǎn)F、G是邊AC的三等分點(diǎn),DFEG的延長線相交于點(diǎn)H,連接HA、HC

(1)求證:四邊形FBGH是菱形;

(2)求證:四邊形ABCH是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸,軸分別交于點(diǎn),經(jīng)過點(diǎn)的拋物線軸的另一個交點(diǎn)為點(diǎn),點(diǎn)是拋物線上一點(diǎn),過點(diǎn)軸于點(diǎn),連接,設(shè)點(diǎn)的橫坐標(biāo)為.

求拋物線的解析式;

當(dāng)點(diǎn)在第三象限,設(shè)的面積為,求的函數(shù)關(guān)系式,并求出的最大值及此時點(diǎn)的坐標(biāo);

連接,若,請直接寫出此時點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案