【題目】如圖,一次函數(shù)y=kx+3分別與x,y軸交于點N,M,與反比例函數(shù)y= (x>0)的圖象交于點A,若AM:MN=2:3,則k= .
【答案】
【解析】解:過點A作AB⊥x軸于點B,如圖所示.
∵AB⊥x軸,MO⊥x軸,
∴AB∥MO,
∴△NMO∽△NAB,
∴ .
∵AM:MN=2:3,
MN:AN=3:(2+3)=3:5.
令一次函數(shù)y=kx+3中x=0,則y=3,
∴MO=3.
∵ = ,
∴AB=5,
令反比例函數(shù)y= 中y=5,則5= ,
解得:x= .
∴點A的坐標(biāo)為( ,5).
將點A( ,5)代入一次函數(shù)y=kx+3中,
得:5= k+3,解得:k= .
所以答案是: .
【考點精析】通過靈活運用相似三角形的判定與性質(zhì),掌握相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是小華利用含30°角的三角板測量樓房高度的示意圖,已知桌子高AB為1米,地面上B和D之間的距離為100米,則樓高CD約為( )
A.51米
B.59米
C.88米
D.174米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人們環(huán)保意識的增強,“低碳出行”越來越為人們所倡導(dǎo)。小李要從家鄉(xiāng)到寧波工作,若乘飛機需要3小時,乘汽車需要9小時。這兩種交通工具每小時排放的二氧化碳總量為80千克,已知飛機每小時二氧化碳的排放量比汽車多46千克,若小李乘汽車來寧波,那么他此行與乘飛機相比將減少二氧化碳排放量多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC中,∠ACB=90°,點P是線段AC上一點,過點A作AB的垂線,交BP的延長線于點M,MN⊥AC于點N,PQ⊥AB于點Q,AQ=MN. 求證:
(1)△APM是等腰三角形;
(2)PC=AN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點A在數(shù)軸上和原點相距3個單位長度,點B在數(shù)軸上和原點相距 個單位長度,則A、B兩點這間的距離是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與軸交于和兩點,與軸交于點.
(1)求此拋物線的解析式;
(2)設(shè)是線段上的動點,作交于,連接,當(dāng)的面積是面積的2倍時,求點的坐標(biāo);
(3)若為拋物線上、兩點間的一個動點,過作軸的平行線,交于,當(dāng)點運動到什么位置時,線段的值最大,并求此時點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩根旗桿間相距12m,某人從點B沿BA走向點A,一段時間后他到達(dá)點M,此時他仰望旗桿的頂點C和D,兩次視線的夾角為90°,且CM=DM,已知旗桿AC的高為3m,該人的運動速度為1m/s,則這個人運動到點M所用時間是_______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=50°,∠BAC的平分線與AB的中垂線交于點O,點C沿EF折疊后與點O重合,則∠CEO的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=kx+b(k≠0)與直線y=﹣3x平行,且與兩坐標(biāo)軸圍成的三角形的面積為6,那么這條直線的解析式為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com