【題目】在平面直角坐標(biāo)系中,的位置如圖所示.點AB,C的坐標(biāo)分別為,,,根據(jù)下面要求完成解答.

1)作關(guān)于點C成中心對稱的;

2)將向右平移4個單位,作出平移后的;

3)在x軸上求作一點P,使的值最小,直接寫出點P的坐標(biāo).

【答案】(1)見解析;(2)見解析;(3)點P的坐標(biāo)是

【解析】

1)根據(jù)關(guān)于原點對稱的點的坐標(biāo)特征寫出點A1B1、C1的坐標(biāo),然后描點即可;
2)利用點平移的坐標(biāo)變換規(guī)律寫出點A、B、C的對應(yīng)點A2、B2、C2的坐標(biāo),然后描點即可得到△A2B2C2

3)過點作關(guān)于x軸的對稱點,連接,則的最小值為的長度,求出長度即可.

解:(1),(2)如圖:

3)過點作關(guān)于x軸的對稱點,連接

∴當(dāng)的值最小時,,

此時,點P的坐標(biāo)是:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大熊山某農(nóng)家樂為了抓住五一小長假的商機,決定購進A、B兩種紀念品。若購進A種紀念品4件,B種紀念品3件,需要550元;若購進A種紀念品8件,B種紀念品5件,需要1050元。

1)求購進AB兩種紀念品每件各需多少元。

2)若該農(nóng)家樂決定購進這兩種紀念品共100件,考慮市場需求和資金周轉(zhuǎn),用于購買這100件紀念品的資金不少于7500元,但不超過7650元,那么該農(nóng)家樂共有幾種進貨方案。

3)若銷售每件A種紀念品可獲利潤30元,每件B種紀念品可獲利潤20元,在第(2)問的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了大力弘揚和踐行社會主義核心價值觀,某鄉(xiāng)鎮(zhèn)在一條公路旁的小山坡上,樹立一塊大型標(biāo)語牌AB,如圖所示,標(biāo)語牌底部B點到山腳C點的距離BC為20米,山坡的坡角為30°. 某同學(xué)在山腳的平地F處測量該標(biāo)語牌的高,測得點C到測角儀EF的水平距離CF = 1.7米,同時測得標(biāo)語牌頂部A點的仰角為45°,底部B點的仰角為20°,求標(biāo)語牌AB的高度.(參考數(shù)值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,

【答案】標(biāo)語牌AB的高度約為12.16

【解析】分析:解直角三角形求處CD的長度,則 然后在直角中即可求得的長,RtAGE中,求得的長,從而求得的高度..

詳解:RtBDC中, BC = 20米,

RtBGE中,

RtAGE,

答:標(biāo)語牌AB的高度約為12.16

點睛:考查解直角三角形的應(yīng)用,結(jié)合圖形利用三角函數(shù)解三角形即可.

型】解答
結(jié)束】
20

【題目】已知ABO直徑,ACO的切線,BCO于點D(如圖1).

(1)若AB=2,∠B=30°,求CD的長;

(2) 取AC的中點E,連結(jié)DE(如圖2),求證:DEO相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖AB為⊙O的直徑,AE平分∠BAF,交⊙O于點E,過點E作直線ED⊥AF,交AF的延長線于點D,交AB的延長線于點C

(1)求證:CD是⊙O的切線

(2)若CB=2,CE=4,求AE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角中,,,DAB上一個動點,以DC為斜邊作等腰直角,使點EA位于CD兩側(cè)。點D從點A到點B的運動過程中,周長的最小值是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點O為直線AB上一點,過O點作射線OC,使∠BOC60°,將一直角三角板的直角頂點放在點O處,一邊ON在射線OB上,另一邊OM在直線AB的上方.

1)在圖1中,∠COM   度;

2)將圖1中的三角板繞點O按逆時針方向旋轉(zhuǎn),使得ON在∠BOC的內(nèi)部,如圖2,若∠NOCMOA,求∠BON的度數(shù);

3)將圖1中的三角板繞點O以每秒10°的速度沿逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,當(dāng)直線ON恰好平分∠BOC時,旋轉(zhuǎn)的時間是   秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,反比例函數(shù)的圖象過第二象限內(nèi)的點,軸于,面積為3,若直線經(jīng)過點,并且經(jīng)過反比例函數(shù)的圖象上另一點.

(1)求反比例函數(shù)的解析式;

(2)求直線解析式

(3)的面積;

(4)直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了開發(fā)利用海洋資源,某勘測飛機預(yù)測量一島嶼兩端A、B的距離,飛機在距海平面垂直高度為100米的點C處測得端點A的俯角為60°,然后沿著平行于AB的方向水平飛行了500米,在點D測得端點B的俯角為45°,求島嶼兩端A、B的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】100厘米長的鉛絲,彎折成一個長方形的模型.

(1)設(shè)長方形的面積為S平方厘米,長方形的長為厘米,用的式子表示S;

(2)當(dāng)S=400平方厘米時,求的值;

(3)當(dāng)S=625平方厘米時,求的值;

(4)S的值會不會為700平方厘米?

查看答案和解析>>

同步練習(xí)冊答案