【題目】如圖,在梯形ABCD中,AD//BC, ∠B=70°∠C=40°,DE//AB交BC于點E.若AD=3,BC=10,則CD的長是( )

A.7
B.10
C.13
D.14

【答案】A
【解析】根據(jù)平行線的性質(zhì),得∠DEC=∠B=70°,根據(jù)三角形的內(nèi)角和定理,得∠CDE=70°,再根據(jù)等角對等邊,得CD=CE.根據(jù)兩組對邊分別平行,知四邊形ABED是平行四邊形,則BE=AD=3,從而求解.

∵DE//AB,∠B=70°,
∴∠DEC=∠B=70°.
又∵∠C=40°,
∴∠CDE=70°.
∴CD=CE.
∵AD//BC,DE//AB,
∴四邊形ABED是平行四邊形.
∴BE=AD=3.
∴CD=CE=BC-BE=BC-AD=10-3=7.
故選A.


【考點精析】根據(jù)題目的已知條件,利用三角形的內(nèi)角和外角和平行四邊形的判定與性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與正比例函數(shù)y=2x的圖象交于點A(m,2),與y軸的交點為C,與x軸的交點為D.
(1)m=;
(2)若一次函數(shù)圖象經(jīng)過點B(﹣2,﹣1),求一次函數(shù)的解析式;
(3)在(2)的條件下,求△AOD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列語句中,錯誤的是(
A.一條直線有且只有一條垂線
B.不相等的兩個角一定不是對頂角
C.直角的補角必是直角
D.兩直線平行,同旁內(nèi)角互補

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上表示a的點到原點的距離為3,則a﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰梯形ABCD中,AD∥BC,AE∥DC,∠B=60°,BC=3,△ABE的周長為6,則等腰梯形的周長是( )

A.8
B.10
C.12
D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是本地區(qū)一種產(chǎn)品30天的銷售圖象,產(chǎn)品日銷售量y(單位:件)與時間t(單位:天)的大致函數(shù)關(guān)系如圖①,圖②是一件產(chǎn)品的銷售利潤z(單位:元)與時間t(單位:天)的函數(shù)關(guān)系,已知日銷售利潤=日銷售量×一件產(chǎn)品的銷售利潤,下列結(jié)論錯誤的是( )

A. 日銷售量為150件的是第12天與第30天

B. 第10天銷售一件產(chǎn)品的利潤是15元

C. 從第1天到第20天這段時間內(nèi)日銷售利潤將先增加再減少

D. 第18天的日銷售利潤是1225元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解x2+mx﹣12=(x+p)(x+q),其中m、p、q都為整數(shù),則這樣的m的最大值是(  )

A. 1 B. 4 C. 11 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖是由一些火柴棒搭成的圖案:

(1)擺第①個圖案用 根火柴棒,擺第②個圖案用 根火柴棒,擺第③個圖案用 根火柴棒.

(2)按照這種方式擺下去,擺第n個圖案用多少根火柴棒?

(3)計算一下擺121根火柴棒時,是第幾個圖案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班數(shù)學(xué)興趣小組對函數(shù)y=x2﹣2|x|的圖象和性質(zhì)進行了探究,探究過程如下,請補充完整.(1)自變量x的取值范圍是全體實數(shù),xy的幾組對應(yīng)值列表如下:

x

﹣3

﹣2

﹣1

0

1

2

3

y

3

m

﹣1

0

﹣1

0

3

其中,m=  

2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標系中描點,并畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分.

3)觀察函數(shù)圖象,寫出兩條函數(shù)的性質(zhì).

4)進一步探究函數(shù)圖象發(fā)現(xiàn):

①函數(shù)圖象與x軸有  個交點,所以對應(yīng)的方程x2﹣2|x|=0   個實數(shù)根;

②方程x2﹣2|x|=2  個實數(shù)根.

③關(guān)于x的方程x2﹣2|x|=a4個實數(shù)根時,a的取值范圍是 

查看答案和解析>>

同步練習(xí)冊答案