【題目】如圖1,在平面直角坐標(biāo)系xOy中,直線l經(jīng)過(guò)點(diǎn)O,點(diǎn)A(0,6),經(jīng)過(guò)點(diǎn)A、O、B三點(diǎn)的⊙P與直線l相交于點(diǎn)C(7,7),且CA=CB.

⑴ 求點(diǎn)B的坐標(biāo);

⑵ 如圖2,將△AOB繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)90°得到△A′O′B.判斷直線P的位置關(guān)系并說(shuō)明理由.

【答案】⑴點(diǎn)B(8,0) ⑵ 直線A′O′與P相切

【解析】試題分析:(1)過(guò)點(diǎn)CCEx軸于點(diǎn)E,過(guò)點(diǎn)CCFy軸于點(diǎn)F.

可以由已知坐標(biāo)求出AF長(zhǎng),Rt△ACF≌Rt△BCE,可以求出BEAF,得到OB長(zhǎng).

(2) AB的中點(diǎn)即為圓心P,OB的中點(diǎn)R,連接RP并延長(zhǎng)交A′O′的延長(zhǎng)線于點(diǎn)Q,利用旋轉(zhuǎn)條件,RPA′O′.,最終得到四邊形RBO′Q是矩形, 圓心P到直線A′O的距離,和半徑相等,所以可以得到直線A′O′與P相切.

過(guò)點(diǎn)CCEx軸于點(diǎn)E,過(guò)點(diǎn)CCFy軸于點(diǎn)F.

∴ ∠CFOCEOCEB=90°,∵ ∠AOB90°,

四邊形FOEC是矩形 ,

∴ ∠FCE90° ,

∴ ∠ACEACF90°,

由點(diǎn)C7,7)得:CFCE7,

∴ ∠AOCBOC45°,OFCE7,OECF7,

∴ ∠CBACOA45°,CABCOB45°,

∴ ∠CABCBA , ∴ ACBC.

點(diǎn)A0,6,∴ OA6,

AFOFOA761 .

∵ ∠AOB90° , ∴ ABP的直徑 ,

∴ ∠ACB90°,

∴ ∠ACEBCE90°,

∴ ∠ACFBCE .

Rt△ACFRt△BCE,

,

∴ Rt△ACF≌Rt△BCE,

BEAF1,

OBOEEB718,

點(diǎn)B8,0.

直線A′O′P相切.

如圖2,由ABP的直徑可知:AB的中點(diǎn)即為圓心P,

OB的中點(diǎn)R,連接RP并延長(zhǎng)交A′O′的延長(zhǎng)線于點(diǎn)Q,,

PROA,PR3 ,

∵ ∠AOB90° ∴ ∠QRB90°,

∵ △A′O′BAOB繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)90°得到,

∴ ∠OBO′90°,BO′BO8,

∵ ∠AO′B90° ∴ ∠BO′Q90° 即:RPA′O′.

四邊形RBO′Q是矩形,

∴ ∠O′QR90°,RQ=BO′8 ,

PQRQPR835,

∵ ⊙P的直徑AB10,

圓心P到直線A′O的距離等于半徑長(zhǎng)5,

直線A′O′P相切.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)宜昌市統(tǒng)計(jì)局2013年底統(tǒng)計(jì),中心城區(qū)人均住房建筑面積約為30平方米,為把宜昌市建設(shè)成特大城市,中心城區(qū)住房建筑面積和人口數(shù)都迅速增加.2014年中心城區(qū)住房建筑面積比2013年中心城區(qū)住房建筑面積增長(zhǎng)的百分?jǐn)?shù)是a,2015年中心城區(qū)住房建筑面積比2013年中心城區(qū)住房建筑面積增長(zhǎng)的百分?jǐn)?shù)是2a.從2014年開(kāi)始,中心城區(qū)人口數(shù)在2013180萬(wàn)的基礎(chǔ)上每年遞增mm0)萬(wàn)人,這樣2015年中心城區(qū)的人口數(shù)比2014年中心城區(qū)人口數(shù)的1.5倍少80萬(wàn)人,已知2015年中心城區(qū)的人均住房建筑面積與2014年持平.

1)根據(jù)題意填表(用含a,m的式子表示各個(gè)數(shù)量);

年份

中心城區(qū)人口數(shù)

中心城區(qū)人均住房建筑面積(單位:平方米)

中心城區(qū)住房建筑面積(單位:萬(wàn)平凡米)

2013

180

30

5400

2014

   

   

   

2015

   

   

   

2)求題目中的am

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為建設(shè)資源節(jié)約型、環(huán)境友好型社會(huì),克服因干旱而造成的電力緊張困難,切實(shí)做好節(jié)能減排工作.某地決定對(duì)居民家庭用電實(shí)行“階梯電價(jià)”,電力公司規(guī)定:居民家庭每月用電量在80千瓦時(shí)以下(80千瓦時(shí),1千瓦時(shí)俗稱1)時(shí),實(shí)行“基本電價(jià)”;當(dāng)居民家庭月用電量超過(guò)80千瓦時(shí)時(shí),超過(guò)部分實(shí)行“提高電價(jià)”.

(1)小張家今年2月份用電100千瓦時(shí),上繳電費(fèi)68元;5月份用電120千瓦時(shí),上繳電費(fèi)88元.求“基本電價(jià)”和“提高電價(jià)”分別為多少元/千瓦時(shí);

(2)6月份小張家預(yù)計(jì)用電130千瓦時(shí),請(qǐng)預(yù)算小張家6月份應(yīng)上繳的電費(fèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓柱形水管內(nèi)原有積水的水平面寬CD=20cm水深GF=2cm若水面上升2cmEG=2cm),則此時(shí)水面寬

AB為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠設(shè)計(jì)了一款工藝品,每件成本元,為了合理定價(jià),現(xiàn)投放市場(chǎng)進(jìn)行試銷.據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是元時(shí),每天的銷售量是件,若銷售單價(jià)每降低元,每天就可多售出件,但要求銷售單價(jià)不得低于元.如果降價(jià)后銷售這款工藝品每天能盈利元,那么此時(shí)銷售單價(jià)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖AGF=ABC,1+2=180°.

(1)試判斷BFDE的位置關(guān)系,并說(shuō)明理由;

(2)BFAC,2=150°,求∠AFG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過(guò)程中發(fā)現(xiàn),每月銷售量(萬(wàn)件)與銷售單價(jià)(元)之間的關(guān)系可以近似地看作一次函數(shù)(利潤(rùn)=售價(jià)﹣制造成本)

1)寫(xiě)出每月的利潤(rùn)(萬(wàn)元)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式;

2)根據(jù)相關(guān)部門(mén)規(guī)定,這種電子產(chǎn)品的銷售單價(jià)不能高于40元,如果廠商每月的制造成本不超過(guò)540萬(wàn)元,那么當(dāng)銷售單價(jià)為多少元時(shí),廠商每月獲得的利潤(rùn)最大?最大利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象經(jīng)過(guò)原點(diǎn)及點(diǎn),,且圖象與x軸的另一交點(diǎn)到原點(diǎn)的距離為1,則該二次函數(shù)解析式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的口袋里裝有若干個(gè)相同的紅球,為了估計(jì)袋中紅球的數(shù)量,某學(xué)習(xí)小組做了摸球?qū)嶒?yàn),他們將30個(gè)與紅球大小形狀完全相同的白球裝入袋中,攪勻后從中隨機(jī)摸出一個(gè)球并記下顏色,再把它放回袋中,不斷重復(fù).下表是幾次活動(dòng)匯總后統(tǒng)計(jì)的數(shù)據(jù):

摸球的次數(shù)s

150

200

500

900

1000

1200

摸到白球的頻數(shù)n

51

64

156

275

303

361

摸到白球的頻率

0.34

0.32

0.312

0.306

0303

0.301

(1)請(qǐng)估計(jì):當(dāng)次數(shù)s很大時(shí),摸到白球的頻率將會(huì)接近   ;假如你去摸一次,你摸到白球的概率是   (精確到0.1).

(2)試估算口袋中紅球有多少只?

(3)解決了上面的問(wèn)題后請(qǐng)你從統(tǒng)計(jì)與概率方面談一條啟示.

查看答案和解析>>

同步練習(xí)冊(cè)答案