【題目】如圖1(注:與圖2完全相同),在直角坐標系中,拋物線經(jīng)過點三點,,

1)求拋物線的解析式和對稱軸;

2是拋物線對稱軸上的一點,求滿足的值為最小的點坐標(請在圖1中探索);

3)在第四象限的拋物線上是否存在點,使四邊形是以為對角線且面積為的平行四邊形?若存在,請求出點坐標,若不存在請說明理由.(請在圖2中探索)

【答案】1,函數(shù)的對稱軸為:;(2)點;(3)存在,點的坐標為

【解析】

根據(jù)點的坐標可設二次函數(shù)表達式為:,由C點坐標即可求解;

連接交對稱軸于點,此時的值為最小,即可求解;

,則,將該坐標代入二次函數(shù)表達式即可求解.

解:根據(jù)點,的坐標設二次函數(shù)表達式為:,

∵拋物線經(jīng)過點,

,解得:,

拋物線的表達式為: ,

函數(shù)的對稱軸為:;

連接交對稱軸于點,此時的值為最小,

BC的解析式為:,

將點的坐標代入一次函數(shù)表達式:得:

解得:

直線的表達式為:,

時,,

故點;

存在,理由:

四邊形是以為對角線且面積為的平行四邊形,

在第四象限,故:則,

將該坐標代入二次函數(shù)表達式得:

,

解得:

故點的坐標為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠A=30°,∠C=90°E是斜邊AB的中點,點PAC邊上一動點,若RtABC的直角邊AC=4,則PB+PE的最小值等于_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當x≥2時,yx的增大而增大,且-2≤x≤1時,y的最大值為9,則a的值為  

A. 1 B. - C. D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC5,BC6,將ABC繞點B逆時針旋轉60°得到A'BC,連接A'C,則A'C的長為(  )

A. 6B. 4+2C. 4+3D. 2+3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1(注:與圖2完全相同),在直角坐標系中,拋物線經(jīng)過點三點,,

1)求拋物線的解析式和對稱軸;

2是拋物線對稱軸上的一點,求滿足的值為最小的點坐標(請在圖1中探索);

3)在第四象限的拋物線上是否存在點,使四邊形是以為對角線且面積為的平行四邊形?若存在,請求出點坐標,若不存在請說明理由.(請在圖2中探索)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:有這樣一個問題:關于的一元二次方程有兩個不相等的且非零的實數(shù)根探究,,滿足的條件.

小明根據(jù)學習函數(shù)的經(jīng)驗,認為可以從二次函數(shù)的角度看一元二次方程,下面是小明的探究過程:①設一元二次方程對應的二次函數(shù)為;

②借助二次函數(shù)圖象,可以得到相應的一元二次中,滿足的條件,列表如下:

方程根的幾何意義:

方程兩根的情況

對應的二次函數(shù)的大致圖象

,滿足的條件

方程有兩個不相等的負實根

____________

方程有兩個不相等的正實根

____________

____________

1)參考小明的做法,把上述表格補充完整;

2)若一元二次方程有一個負實根,一個正實根,且負實根大于-1,求實數(shù)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系xOy中,矩形OABC的邊長OA、OC分別為12cm、6cm,點A、C分別在y軸的負半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點A、B,且18a+c=0.

(1)求拋物線的解析式.

(2)如果點P由點A開始沿AB邊以1cm/s的速度向終點B移動,同時點Q由點B開始沿BC邊以2cm/s的速度向終點C移動.

移動開始后第t秒時,設PBQ的面積為S,試寫出S與t之間的函數(shù)關系式,并寫出t的取值范圍.

當S取得最大值時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出R點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC,AB=AC=5,BC=6,D,E分別是邊AB,AC上的兩個動點(D不與A,B重合),且保持DEBC,以DE為邊,在點A的異側作正方形DEFG.

(1)FGBC重合時,求正方形DEFG的邊長;

(2)AD=x,△ABC與正方形DEFG重疊部分的面積為y,試求y關于x的函數(shù)關系式,并寫出x的取值范圍;

(3)當△BDG是等腰三角形時,請直接寫出AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)和一次函數(shù),其中一次

函數(shù)圖象經(jīng)過(a,b)與(a+1,b+k)兩點.

(1) 求反比例函數(shù)的解析式.

(2) 如圖,已知點A是第一象限內(nèi)上述兩個函數(shù)圖象的交點,A點坐標.

(3) 利用(2)的結果,請問:X軸上是否存在點P,使△AOP為等腰三角形?若存在,把符合條件的P點坐標都求出來;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案