【題目】下列圖形中:①線段,②角,③等腰三角形,④有一個角是30°的直角三角形,其中一定是軸對稱圖形的個數(shù)( 。

A.1B.2C.3D.4

【答案】C

【解析】

直接利用軸對稱圖形的性質(zhì)分別分析得出答案.

解:①線段,是軸對稱圖形;

②角,是軸對稱圖形;

③等腰三角形,是軸對稱圖形;

④有一個角是30°的直角三角形,不是軸對稱圖形.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果兩個一次函數(shù)y=k1x+b1和y=k2x+b2滿足k1=k2,b1b2,那么稱這兩個一次函數(shù)為“平行一次函數(shù)”.如圖,已知函數(shù)y=﹣2x+4的圖象與x軸、y軸分別交于A、B兩點(diǎn),一次函數(shù)y=kx+b與y=﹣2x+4是“平行一次函數(shù)”

(1)若函數(shù)y=kx+b的圖象過點(diǎn)(3,1),求b的值;

(2)若函數(shù)y=kx+b的圖象與兩坐標(biāo)軸圍成的三角形和AOB構(gòu)成位似圖形,位似中心為原點(diǎn),位似比為1:2,求函數(shù)y=kx+b的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線y=(x﹣1)2+1向下平移1個單位,所得新拋物線的解析式為(
A.y=(x﹣1)2+2
B.y=(x﹣1)2
C.y=(x﹣2)2+1
D.y=x2+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)a、b,A、B兩點(diǎn)之間的距離表示為∣AB∣.

當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時,不妨設(shè)點(diǎn)A在原點(diǎn),如圖1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;

當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時,如圖2,點(diǎn)A、B都在原點(diǎn)的右邊

∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣= =∣a-b∣;

如圖3,當(dāng)點(diǎn)A、B都在原點(diǎn)的左邊,

∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣==∣a-b∣;

如圖4,當(dāng)點(diǎn)A、B在原點(diǎn)的兩邊,

∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣= =∣a-b∣;

回答下列問題:

(1)數(shù)軸上表示1和6的兩點(diǎn)之間的距離是 ,數(shù)軸上表示2和-3的兩點(diǎn)之間的距離是

(2)數(shù)軸上若點(diǎn)A表示的數(shù)是x,點(diǎn)B表示的數(shù)是-4,則點(diǎn)A和B之間的距離是 ,若∣AB∣=3,那么x為 ;

(3)當(dāng)x是 時,代數(shù)式;

(4)若點(diǎn)A表示的數(shù),點(diǎn)B與點(diǎn)A的距離是10,且點(diǎn)B在點(diǎn)A的右側(cè),動點(diǎn)P、Q同時從A、B出發(fā)沿?cái)?shù)軸正方向運(yùn)動,點(diǎn)P的速度是每秒3個單位長度,點(diǎn)Q的速度是每秒個單位長度,求運(yùn)動幾秒后,點(diǎn)Q與點(diǎn)P 相距1個單位?(請寫出必要的求解過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,平分,交于點(diǎn)平分,交于點(diǎn),交于點(diǎn),連接,.

(1)求證:四邊形是菱形;

(2)若,,,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:2(a2﹣ab)﹣3(a2﹣ab),其中,a=﹣2,b=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一次函數(shù)y2x+2的圖象向下平移2個單位長度,得到相應(yīng)的函數(shù)表達(dá)式為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若a<0,b>0,化簡|a|+|2b|﹣|a﹣b|得(
A.b
B.﹣b
C.﹣3b
D.2a+b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(2,3),在坐標(biāo)軸上找一點(diǎn)P,使得△AOP是等腰三角形,則這樣的點(diǎn)P共有個.

查看答案和解析>>

同步練習(xí)冊答案