【題目】垃圾分類意識(shí)已經(jīng)深入人心.我校王老師準(zhǔn)備用(全部用完)購(gòu)買兩類垃圾桶,已知類桶單價(jià)元,類桶單價(jià)元,設(shè)購(gòu)入類桶個(gè),類桶個(gè).

1)求關(guān)于的函數(shù)表達(dá)式.

2)若購(gòu)進(jìn)的類桶不少于類桶的倍.

①求至少購(gòu)進(jìn)類桶多少個(gè)?

②根據(jù)臨場(chǎng)實(shí)際購(gòu)買情況,王老師在總費(fèi)用不變的情況下把一部分類桶調(diào)換成另一種類桶,且調(diào)換后類桶的數(shù)量不少于類桶的數(shù)量,已知類桶單價(jià)元,則按這樣的購(gòu)買方式,類桶最多可買 個(gè).(直接寫出答案)

【答案】1;(2)①50;②18.

【解析】

1)根據(jù)題意,通過(guò)等量關(guān)系進(jìn)行列式即可得解;

2)①根據(jù)購(gòu)進(jìn)的類桶不少于類桶的倍的不等關(guān)系進(jìn)行列式求解即可得解;

②根據(jù)題意設(shè)類桶的數(shù)量為a,根據(jù)A類桶單價(jià)與C類桶單價(jià)的比值關(guān)系確定不等式,進(jìn)而求解,由總費(fèi)用不變即可得到B類桶的數(shù)量.

1)由題意,得,整理得

關(guān)于的函數(shù)表達(dá)式為;

2)①購(gòu)進(jìn)的類桶不少于類桶的

,解得

∴至少購(gòu)買類桶個(gè);

②當(dāng)時(shí),

類桶單價(jià)元,類桶單價(jià)

類桶單價(jià):類桶單價(jià)=2:3

設(shè)調(diào)換后Ca

由題意得:

解得,可知a時(shí)2的倍數(shù)

,a為正整數(shù)

類桶最多可買18個(gè).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐﹣﹣旋轉(zhuǎn)中的數(shù)學(xué)

問(wèn)題背景:在一次綜合實(shí)踐活動(dòng)課上,同學(xué)們以兩個(gè)矩形為對(duì)象,研究相似矩形旋轉(zhuǎn)中的問(wèn)題:已知矩形ABCD∽矩形A′B′C′D′,它們各自對(duì)角線的交點(diǎn)重合于點(diǎn)O,連接AA′,CC′.請(qǐng)你幫他們解決下列問(wèn)題:

觀察發(fā)現(xiàn):(1)如圖1,若A′B′∥AB,則AA′與CC′的數(shù)量關(guān)系是______;

操作探究:(2)將圖1中的矩形ABCD保持不動(dòng),矩形A′B′C′D′繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)角度α(0°<α≤90°),如圖2,在矩形A′B′C′D′旋轉(zhuǎn)的過(guò)程中,(1)中的結(jié)論還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由;

操作計(jì)算:(3)如圖3,在(2)的條件下,當(dāng)矩形A′B′C′D′繞點(diǎn)O旋轉(zhuǎn)至AA′⊥A′D′時(shí),若AB=6,BC=8,A′B′=3,求AA′的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩個(gè)大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖,點(diǎn),在同一條直線上,連結(jié)DC

1)請(qǐng)判斷的位置關(guān)系,并證明

2)若,,求的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù) y kx y 的圖象交于 A、B 兩點(diǎn),過(guò) A y 軸的垂線,交函數(shù)的圖象于點(diǎn) C,連接 BC,則ABC 的面積為(

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將如圖所示的牌面數(shù)字分別是1,23,4的四張撲克牌背面朝上,洗勻后放在桌面上.

1)從中隨機(jī)抽出一張牌,牌面數(shù)字是偶數(shù)的概率是

2)從中隨機(jī)抽出二張牌,兩張牌牌面數(shù)字的和是5的概率是 ;

3)先從中隨機(jī)抽出一張牌,將牌面數(shù)字作為十位上的數(shù)字,然后將該牌放回并重新洗勻,再隨機(jī)抽取一張,將牌面數(shù)字作為個(gè)位上的數(shù)字,請(qǐng)用畫樹狀圖或列表的方法求組成的兩位數(shù)恰好是4的倍數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1中,,點(diǎn)在數(shù)軸-1處,點(diǎn)在數(shù)軸1處,,,則數(shù)軸上點(diǎn)對(duì)應(yīng)的數(shù)是

2)如圖2,點(diǎn)是直線上的動(dòng)點(diǎn),過(guò)點(diǎn)垂直軸于點(diǎn),點(diǎn)軸上的動(dòng)點(diǎn),當(dāng)以,為頂點(diǎn)的三角形為等腰直角三角形時(shí)點(diǎn)的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(12分)如圖QPN的頂點(diǎn)P在正方形ABCD兩條對(duì)角線的交點(diǎn)處,QPN=α,將QPN繞點(diǎn)P旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中QPN的兩邊分別與正方形ABCD的邊AD和CD交于點(diǎn)E和點(diǎn)F(點(diǎn)F與點(diǎn)C,D不重合)

(1)如圖,當(dāng)α=90°時(shí),DE,DF,AD之間滿足的數(shù)量關(guān)系是

(2)如圖,將圖中的正方形ABCD改為ADC=120°的菱形,其他條件不變,當(dāng)α=60°時(shí),(1)中的結(jié)論變?yōu)镈E+DF=AD,請(qǐng)給出證明;

(3)在(2)的條件下,若旋轉(zhuǎn)過(guò)程中QPN的邊PQ與射線AD交于點(diǎn)E,其他條件不變,探究在整個(gè)運(yùn)動(dòng)變化過(guò)程中,DE,DF,AD之間滿足的數(shù)量關(guān)系,直接寫出結(jié)論,不用加以證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在中,,平分,,

(1)

(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC,BC8,點(diǎn)P由點(diǎn)B向點(diǎn)A運(yùn)動(dòng),同時(shí),點(diǎn)Q由點(diǎn)C出發(fā)沿線段AC的延長(zhǎng)線運(yùn)動(dòng),已知點(diǎn)P、Q運(yùn)動(dòng)速度相等,點(diǎn)Q與線段BC相交于點(diǎn)D,過(guò)點(diǎn)PPEAQ,交BC于點(diǎn)E

1)如圖1,求證:DCE中點(diǎn);

2)如圖2,過(guò)點(diǎn)PPFBC,垂足為點(diǎn)F,在P、Q的運(yùn)動(dòng)過(guò)程中,請(qǐng)判斷DF的長(zhǎng)度是否為定值;若是,請(qǐng)求出DF的長(zhǎng)度;若否,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案