【題目】已知如圖:點(diǎn)(1,3)在函數(shù)y=(x>0)的圖象上,矩形ABCD的邊BC在x軸上,E是對(duì)角線BD的中點(diǎn),函數(shù)y=(x>0)的圖象又經(jīng)過(guò)A、E兩點(diǎn),點(diǎn)E的橫坐標(biāo)為m,解答下列問(wèn)題:
(1)求k的值;
(2)求點(diǎn)A的坐標(biāo);(用含m代數(shù)式表示)
(3)當(dāng)∠ABD=45°時(shí),求m的值.
【答案】(1)3;(2)A;(3).
【解析】
(1)把(1,3)代入反比例函數(shù)解析式即可;
(2)BG=CG,求出OB即可,A在反比例函數(shù)解析式上,求出AB,即A的縱坐標(biāo),代入反比例函數(shù)解析式即可求出A的橫坐標(biāo);
(3)∠ABD=45°時(shí),AB=BD,把(2)中的代數(shù)式代入即可求解.
(1)由函數(shù)y=圖象過(guò)點(diǎn)(1,3),則把點(diǎn)(1,3)坐標(biāo)代入y=中,得:k=3,y=;
(2)連接AC,則AC過(guò)E,過(guò)E作EG⊥BC交BC于G點(diǎn).
∵點(diǎn)E的橫坐標(biāo)為m,E在雙曲線y=上,∴E的縱坐標(biāo)是y=.
∵E為BD中點(diǎn),∴由平行四邊形性質(zhì)得出E為AC中點(diǎn),∴BG=GC=BC,∴AB=2EG=,即A點(diǎn)的縱坐標(biāo)是,代入雙曲線y=得:A的橫坐標(biāo)是m,∴A(m,);
(3)當(dāng)∠ABD=45°時(shí),AB=AD,則有=m,即m2=6,解得:m1=,m2=﹣(舍去),∴m=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,已知∠ABC=60°,∠ACB=50°,BE是AC上的高,CF是AB上的高,H是BE和CF的交點(diǎn).求∠ABE、∠ACF和∠BHC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4 cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2 cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D,E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,連結(jié)DE,EF.
(1)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請(qǐng)說(shuō)明理由;
(2)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙二人從學(xué)校出發(fā)去科技館,甲步行一段時(shí)間后,乙騎自行車(chē)沿相同路線行進(jìn),兩人均勻速前行,他們的路程差S(米)與甲出發(fā)時(shí)間t(分)之間的函數(shù)關(guān)系如圖所示.下列說(shuō)法:①乙先到達(dá)科技館;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中,正確的是 ______(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+c的圖象經(jīng)過(guò)點(diǎn)A(﹣4,3),B(﹣2,6),點(diǎn)A關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為點(diǎn)C,點(diǎn)P是拋物線對(duì)稱軸右側(cè)圖象上的一點(diǎn),點(diǎn)G(0,﹣1).
(1)求出點(diǎn)C坐標(biāo)及拋物線的解析式;
(2)若以A,C,P,G為頂點(diǎn)的四邊形面積等于30時(shí),求點(diǎn)P的坐標(biāo);
(3)若Q為線段AC上一動(dòng)點(diǎn),過(guò)點(diǎn)Q平行于y軸的直線與過(guò)點(diǎn)G平行于x軸的直線交于點(diǎn)M,將△QGM沿QG翻折得到△QGN,當(dāng)點(diǎn)N在坐標(biāo)軸上時(shí),求Q點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+bx+c的對(duì)稱軸為直線x=﹣1,部分圖象如圖所示,下列判斷中:
①abc>0;
②b2﹣4ac>0;
③9a﹣3b+c=0;
④若點(diǎn)(﹣0.5,y1),(﹣2,y2)均在拋物線上,則y1>y2;
⑤5a﹣2b+c<0.
其中正確的個(gè)數(shù)有( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1:y=2x+1與直線l2:y=mx+4相交于點(diǎn)P(1,b)
(1)求b,m的值
(2)垂直于x軸的直線x=a與直線l1,l2分別相交于C,D,若線段CD長(zhǎng)為2,求a的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形中,10厘米,6厘米,點(diǎn)沿邊從點(diǎn)開(kāi)始向點(diǎn)以2厘米/秒的速度移動(dòng);點(diǎn)沿邊從點(diǎn)開(kāi)始向點(diǎn)以1厘米/秒的速度移動(dòng).如果同時(shí)出發(fā),用 (秒)表示移動(dòng)的時(shí)間.那么:
(1)如圖1,用含的代數(shù)式表示和,若線段,求的值.
(2)如圖2,在不考慮點(diǎn)的情況下,連接,用含t的代數(shù)式表示△QAB的面積.
(3)圖2中,若△QAB的面積等于長(zhǎng)方形的面積的,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com