【題目】某廠家新開發(fā)的一種摩托車如圖所示,它的大燈射出的光線與地面的夾角分別為,大燈離地面距離

該車大燈照亮地面的寬度約是多少(不考慮其它因素)?

一般正常人從發(fā)現(xiàn)危險(xiǎn)到做出剎車動(dòng)作的反應(yīng)時(shí)間是,從發(fā)現(xiàn)危險(xiǎn)到摩托車完全停下所行駛的距離叫做最小安全距離,某人以的速度駕駛該車,從到摩托車停止的剎車距離是,請(qǐng)判斷該車大燈的設(shè)計(jì)是否能滿足最小安全距離的要求,請(qǐng)說明理由.(參考數(shù)據(jù):,,

【答案】(1)該車大燈照亮地面的寬度;該車大燈的設(shè)計(jì)不能滿足最小安全距離的要求理由見解析.

【解析】

1)作ADMN,垂足為D.在RtADC中根據(jù)CD=ADtanACD求得CD的長(zhǎng);RtABD中根據(jù)BD=ADtanABD求得BD的長(zhǎng),由BC=BD-CD可得;
(2)求出正常人作出反應(yīng)過程中摩托車行駛的路程,加上剎車距離,然后與BD的長(zhǎng)進(jìn)行比較即可.

(1)該車大燈照亮地面的寬度

該車大燈的設(shè)計(jì)不能滿足最小安全距離的要求.

理由如下:∵以的速度駕駛,

∴速度還可以化為:,

最小安全距離為:

大燈能照到的最遠(yuǎn)距離是,

∴該車大燈的設(shè)計(jì)不能滿足最小安全距離的要求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某足球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)射門,將足球從離地面0.5mA處正對(duì)球門踢出(點(diǎn)Ay軸上),足球的飛行高度y(單位:m)與飛行時(shí)間t(單位:s)之間滿足函數(shù)關(guān)系y=at2+5t+c,已知足球飛行0.8s時(shí),離地面的高度為3.5m.

(1)足球飛行的時(shí)間是多少時(shí),足球離地面最高?最大高度是多少?

(2)若足球飛行的水平距離x(單位:m)與飛行時(shí)間t(單位:s)之間具有函數(shù)關(guān)系x=10t,已知球門的高度為2.44m,如果該運(yùn)動(dòng)員正對(duì)球門射門時(shí),離球門的水平距離為28m,他能否將球直接射入球門?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年圣誕節(jié)前夕,小明、小麗兩位同學(xué)到某超市調(diào)研一種襪子的銷售情況,

這種襪子的進(jìn)價(jià)為每雙 1 元,請(qǐng)根據(jù)小麗提供的信息解決小明提出的問題.

小麗:每雙定價(jià) 2 元,每天能賣出 500 雙,而且這種襪子的售價(jià)每上漲 0.1 元,其每天的銷售量將減少 10 雙.

小明:照你所說,如果要實(shí)現(xiàn)每天 800 元的銷售利潤(rùn),那該如何定價(jià)?別忘了,物價(jià)局有規(guī)定,售價(jià)不能超過進(jìn)價(jià)的 300%

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為降低空氣污染,公交公司決定全部更換節(jié)能環(huán)保的燃?xì)夤卉嚕?jì)劃購(gòu)買A型和B型兩種公交車共10輛,其中每臺(tái)的價(jià)格,年均載客量如表:

A

B

價(jià)格(萬元/輛)

a

b

年均載客量(萬人//輛)

60

100

若購(gòu)買A型公交車1輛,B型公交車2輛,共需400萬元;若購(gòu)買A型公交車2輛,B型公交車1輛,共需350萬元

(1)求購(gòu)買每輛A型公交車和每輛B型公交車分別多少萬元?

(2)如果該公司購(gòu)買A型和B型公交車的總費(fèi)用不超過1200萬元,且確保這10輛公交車年均載客總和不少于680萬人次,有哪幾種購(gòu)車方案?請(qǐng)你設(shè)計(jì)一個(gè)方案,使得購(gòu)車總費(fèi)用最少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中,A(24),B(4,1),C(-3,4)

(1)平移線段AB到線段CD,使點(diǎn)A與點(diǎn)C重合,寫出點(diǎn)D的坐標(biāo).

(2)直接寫出線段AB平移至線段CD處所掃過的面積.

(3)平移線段AB,使其兩端點(diǎn)都在坐標(biāo)軸上,則點(diǎn)A的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,∠C90°AC3,BC4,分別以ACBC、AB為直徑作半圓,如圖所示,則陰影部分的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰RtABC中,∠BAC90°.點(diǎn)D從點(diǎn)B出發(fā)在線段BC移動(dòng),以AD為腰作等腰RtADE,∠DAE90°.連接CE

⑴如圖,求證:△ACE≌△ABD;

⑵求證:BD2CD22AD2;

⑶若AB4,試問:△DCE的面積有沒有最大值,如沒有請(qǐng)說明理由,如有請(qǐng)求出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點(diǎn)O是菱形ABCD對(duì)角線的交點(diǎn),CE∥BDEB∥AC,連接OE,交BCF

1)求證:OE=CB

2)如果OC: OB=12,OE=,求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以AB為斜邊的RtABC的每條邊為邊作三個(gè)正方形,分別是正方形ABMN,正方形BCPQ,正方形ACEF,且邊EF恰好經(jīng)過點(diǎn)N.若S3S46,則S1+S5_____.(注:圖中所示面積S表示相應(yīng)封閉區(qū)域的面積,如S3表示△ABC的面積)

查看答案和解析>>

同步練習(xí)冊(cè)答案