【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)AB的坐標(biāo)分別是A(-1,0)、B4,5),拋物線+b+c經(jīng)過A、B兩點(diǎn)

1)求拋物線的解析式;

2)點(diǎn)M是線段AB上的一點(diǎn)(不與A、B重合),過M軸的垂線交拋物線與點(diǎn)N,求線段MN的最大值,并求出點(diǎn)MN的坐標(biāo);

3)在(2)的條件下,在拋物線上是否存在點(diǎn)P,使得⊿PMN是以MN為直角邊的直角三角形?若存在求出點(diǎn)P的坐標(biāo),若不存在請(qǐng)說明理由.

【答案】(1)-2-3;(2MN的最大值為,MN的坐標(biāo)分別為M(), N的坐標(biāo)為N() ;(3,,

【解析】

1)直接把A、B兩點(diǎn)的坐標(biāo)代入拋物線,即可求出解析式;

2)先求出直線AB的解析式,然后設(shè)點(diǎn)M為(xx+1),N),然后得到MN,結(jié)合二次函數(shù)的性質(zhì),即可求出MN的最大值;

3)根據(jù)題意,可分為:①當(dāng)以點(diǎn)M為直角三角形的頂點(diǎn)時(shí);②當(dāng)以點(diǎn)N為直角三角形的頂點(diǎn)時(shí);結(jié)合點(diǎn)MN的縱坐標(biāo),即可求出點(diǎn)P的坐標(biāo).

解:(1)∵拋物線經(jīng)過A(-1,0)、B4,5)兩點(diǎn),

解得:b=,c=,

∴拋物線的解析式:

2)∵直線AB經(jīng)過A(-1,0)B4,5)兩點(diǎn),設(shè),

∴得方程組解得:k=1 b=1 ,

∴直線AB的解析式為;

設(shè)M的坐標(biāo)為M(), N的坐標(biāo)為N(),

MN=

∴當(dāng)時(shí),MN的最大值為,

,

M、N的坐標(biāo)分別為M()N的坐標(biāo)為N() ;

3)在拋物線上是存在點(diǎn)P,使得△PMN是以MN為直角邊的直角三角形;

理由如下:如圖,

①當(dāng)以點(diǎn)M為直角三角形的頂點(diǎn)時(shí),,

解得:=,=;

②當(dāng)以點(diǎn)N為直角三角形的頂點(diǎn)時(shí),

,

解得:,=(舍去);

∴點(diǎn)P的坐標(biāo)分別為:,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,ABBC,點(diǎn)D、E分別在邊BC,AC上,連接DE,且DEDC

1)問題發(fā)現(xiàn):若∠ACB=∠ECD45°,則  

2)拓展探究:若∠ACB=∠ECD30°,將△EDC饒點(diǎn)C按逆時(shí)針旋轉(zhuǎn)α度(0°<α180°),圖2是旋轉(zhuǎn)過程中的某一位置,在此過程中的大小有無變化?如果不變,請(qǐng)求出的值,如果變化,請(qǐng)說明理由;

3)問題解決:若∠ABC=∠EDCβ0°<β90°),將△EDC旋轉(zhuǎn)到如圖3所示的位置時(shí),則的值為  .(用含β的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形 中,以為邊作等邊三角形 ,連接 ,直線 交對(duì)角線 于點(diǎn),則的度數(shù)為_______________-

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線x軸、y軸分別交于A、B兩點(diǎn),設(shè)O為坐標(biāo)原點(diǎn).

1)求∠ABO的正切值;

2)如果點(diǎn)A向左平移12個(gè)單位到點(diǎn)C,直線l過點(diǎn)C且與直線平行,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解學(xué)生家長(zhǎng)對(duì)孩子使用手機(jī)的態(tài)度情況,隨機(jī)抽取部分學(xué)生家長(zhǎng)進(jìn)行問卷調(diào)查,發(fā)出問卷140份,每位學(xué)生的家長(zhǎng)1份,每份問卷僅表明一種態(tài)度.將回收的問卷進(jìn)行整理(假設(shè)回收的問卷都有效),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

學(xué)生家長(zhǎng)對(duì)孩子使用手機(jī)的態(tài)度情況統(tǒng)計(jì)圖

根據(jù)以上信息回答下列問題:

1)回收的問卷數(shù)為 份,嚴(yán)加干涉部分對(duì)應(yīng)扇形的圓心角度數(shù)為 ;

2)把條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)若將稍加詢問從來不管視為管理不嚴(yán),已知全校共1500名學(xué)生,請(qǐng)估計(jì)該校對(duì)孩子使用手機(jī)管理不嚴(yán)的家長(zhǎng)大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)ymx+nm≠0)的圖象與反比例函數(shù)k≠0)的圖象交于第一、三象限內(nèi)的AB兩點(diǎn),與y軸交于點(diǎn)C,過點(diǎn)BBMx軸,垂足為M,BMOMOB,點(diǎn)A的縱坐標(biāo)為4

1)求該反比例函數(shù)和一次函數(shù)的解析式;

2)連接AO,求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校準(zhǔn)備組織八年級(jí)學(xué)生春游,供學(xué)生選擇的春游地點(diǎn)分別是:植物園、太陽島、東北虎林園.每名學(xué)生只能選擇其中一個(gè)春游地點(diǎn)(必選且只選一個(gè)).該校從八年級(jí)學(xué)生中隨機(jī)抽取了a名學(xué)生,對(duì)他們選擇春游地點(diǎn)的情況進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如圖所示的條形統(tǒng)計(jì)圖.

(1)求a的值.

(2)求a名學(xué)生中選擇去植物園春游的人數(shù)占所抽取人數(shù)的百分比是多少?

(3)如果該校八年級(jí)有440名學(xué)生,請(qǐng)你估計(jì)選擇去太陽島春游的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解九年級(jí)學(xué)生的體能狀況,從我校九年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行八百米跑體能測(cè)試,測(cè)試結(jié)果分為A,BC,D四個(gè)等級(jí),請(qǐng)根據(jù)兩幅圖中的信息回答下列問題:

1)求本次測(cè)試共調(diào)查了   名學(xué)生,補(bǔ)全條形統(tǒng)計(jì)圖;

2B等級(jí)人數(shù)對(duì)應(yīng)扇形統(tǒng)計(jì)圖的圓心角的大小為   ;

3)我校九年級(jí)共有2100名學(xué)生,請(qǐng)你估計(jì)九年級(jí)學(xué)生中體能測(cè)試結(jié)果為C等級(jí)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明想用鏡子測(cè)量一棵松樹的高度,但因樹旁有一條河,不能測(cè)量鏡子與樹之間的距離,于是他兩次利用鏡子,如圖所示,第一次他把鏡子放在C點(diǎn),人在F點(diǎn)時(shí)正好在鏡子中看到樹尖A;第二次把鏡子放在D點(diǎn),人在G點(diǎn)正好看到樹尖A.已知小明的眼睛距離地面1.70m,量得CD12m,CF1.8m,DH3.8m.請(qǐng)你求出松樹的高.

查看答案和解析>>

同步練習(xí)冊(cè)答案