【題目】好學(xué)的小宸利用電腦作了如下的探索:
(1)如圖①,將邊長(zhǎng)為2的等邊三角形復(fù)制若干個(gè)后向右平移,使一條邊在同一直線上.則△A2C1B1的面積為 ;
(2)求△A4C3B3的面積;
(3)在保持圖①中各三角形的邊OB1=B1B2=B2B3=B3B4=2不變的前提下,小宸又作了如下探究:將頂點(diǎn)A1、A2、A3、A4向上平移至同一高度(如圖②),若OA4=OB4,試判斷以O(shè)A2、OA3和OA4為三邊能否構(gòu)成三角形?若能,請(qǐng)判斷這個(gè)三角形的形狀;若不能,請(qǐng)說(shuō)明理由.
【答案】(1);(2).(3)這三邊能構(gòu)成直角三角形.
【解析】
試題分析:(1)分別過(guò)A2、C1作x軸的垂線,垂足分別為E、F,根據(jù)勾股定理求得相應(yīng)線段的長(zhǎng)度,由△A2C1B1=S梯形A1EFC1-△C1FB1-△A2EB1可求得;
(2)分別計(jì)算△A4B3B4、△A4OB4的面積,利用相似三角形即可求出△A4C3B3的面積;
(3)根據(jù)勾股定理的逆定理即可判定三角形為直角三角形.
試題解析:(1) ;
(2)解得△A4B3B4的面積為:
解得△A4OB4的面積為:
利用△OC3B3∽△OA4B4得:S四邊形C3B3B4A4:S△OA4B4=7:16
∴四邊形C3B3B4A4的面積為:
∴△A4C3B3的面積為:.
(3)能.
設(shè)這些等腰三角形的高為h.
則:OA22=9+h2,
OA32=25+h2,
OA42=64
∵OA4=OB4
∴∠OA4B=∠OB4A4=∠A4B3B4
∴△OA4B4∽△A4B4B3
∴
∴A4B4=4
∴h2=15
∴OA22+OA32=OA42
即這三邊能構(gòu)成直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司的拓展部有五個(gè)員工,他們每月的工資分別是3000元,4000元,5000元,7000元和10000元,那么他們工資的中位數(shù)是( )
A.4000元
B.5000元
C.7000元
D.10000元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算正確的是( 。
A. b5 b 5=2 b 5B. (a- b)5 ·(b - a)4=( a - b)9
C. a +2 a 2=3 a 3D. (a n-1)3 = a 3n-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,圖1是一個(gè)長(zhǎng)為2m,寬為2n的長(zhǎng)方形,沿圖中的虛線剪成四個(gè)全等的小長(zhǎng)方形,再按圖2圍成一個(gè)較大的正方形.
(1)請(qǐng)用兩種方法表示圖2中陰影部分的面積(只需表示,不必化簡(jiǎn));
(2)比較(1)的兩種結(jié)果,你能得到怎樣的等量關(guān)系?
(3)請(qǐng)你用(2)中得到的等量關(guān)系解決下面問(wèn)題:如果m﹣n=4,mn=12,求m+n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】人寫字時(shí)眼睛和筆端的距離超過(guò)30cm時(shí)則符合保護(hù)視力的要求.圖1是一位同學(xué)的坐姿,把她的眼睛B、肘關(guān)節(jié)C和筆端A的位置關(guān)系抽象成圖2的△ABC,BC=30cm,AC=22cm,∠ACB=530,她的這種坐姿符合保護(hù)視力的要求嗎?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):sin530≈0.8,cos530≈0.6,tan530≈1.3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將直線y=2x向右平移2個(gè)單位所得的直線的解析式是( )
A.y=2x+2
B.y=2x﹣2
C.y=2(x﹣2)
D.y=2(x+2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1,AC,BD是對(duì)角線.將△DCB繞著點(diǎn)D順時(shí)針旋轉(zhuǎn)45°得到△DGH,HG交AB于點(diǎn)E,連接DE交AC于點(diǎn)F,連接FG.則下列結(jié)論:
①四邊形AEGF是菱形 ②△AED≌△GED ③∠DFG=112.5° ④BC+FG=1.5
其中正確的結(jié)論是__
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com