【題目】如圖,在直角坐標系中,以點為圓心,以3為半徑的圓,分別交軸正半軸于點,交軸正半軸于點,過點的直線交軸負半軸于點.
(1)求兩點的坐標;
(2)求證:直線是⊙的切線.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知ABCD.
(1)作∠B的平分線交AD于E點。(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);
(2)若ABCD的周長為10,CD=2,求DE的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某賓館有客房間供游客居住,當每間客房的定價為每天元時,客房恰好全部住滿;如果每間客房每天的定價每增加元,就會減少間客房出租.設(shè)每間客房每天的定價增加元,賓館出租的客房為間.求:
關(guān)于的函數(shù)關(guān)系式;
如果某天賓館客房收入元,那么這天每間客房的價格是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,學校教學樓對面是一幢實驗樓,小朱在教學樓的窗口C測得實驗樓頂部D的仰角為20°,實驗樓底部B的俯角為30°,量得教學樓與實驗樓之間的距離AB=30m.求實驗樓的高BD.(結(jié)果精確到1m.參考數(shù)據(jù)tan20°≈0.36,sin20°≈0.34,cos20°≈0.94,
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:各類方程的解法
求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為的形式:求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來解;類似的,求解三元一次方程組,把它轉(zhuǎn)化為二元一次方程組來解;求解一元二次方程,把它轉(zhuǎn)化為兩個一元一次方程來解:求解分式方程,把它轉(zhuǎn)化為整式方程來解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗.各類方程的解法不盡相同,但是它們有一個共同的基本數(shù)學思想一一轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.用“轉(zhuǎn)化”的數(shù)學思想,我們還可以解一些新的方程.例如,一元三次方程,可以通過因式分解把它轉(zhuǎn)化為,解方程和,可得方程的解.利用上述材料給你的啟示,解下列方程;
(1);
(2).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在ABCD中,AE⊥BC,AF⊥CD,垂足分別為點E,F,且BE=DF.
(1)如圖1,求證:ABCD是菱形;
(2)如圖2,連接BD,交AE于點G,交AF于點H,連接EF、FG,若∠CEF=30°,在不添加任何字母及輔助線的情況下,請直接寫出圖中面積是△BEG面積2倍的所有三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某魚塘中養(yǎng)了某種魚5000條,為了估計該魚塘中該種魚的總質(zhì)量,從魚塘中捕撈了3次,取得的數(shù)據(jù)如下:
數(shù)量/條 | 平均每條魚的質(zhì)量/kg | |
第1次捕撈 | 20 | 1.6 |
第2次捕撈 | 15 | 2.0 |
第3次捕撈 | 15 | 1.8 |
(1)求樣本中平均每條魚的質(zhì)量;
(2)估計魚塘中該種魚的總質(zhì)量;
(3)設(shè)該種魚每千克的售價為14元,求出售該種魚的收入y(元)與出售該種魚的質(zhì)量x(kg)之間的函數(shù)關(guān)系,并估計自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)(k是常數(shù))
(1)求此函數(shù)的頂點坐標.
(2)當時,隨的增大而減小,求的取值范圍.
(3)當時,該函數(shù)有最大值,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BD是⊙O的弦,延長BD到點C,使DC=BD,連接AC,E為AC上一點,直線ED與AB延長線交于點F,若∠CDE=∠DAC,AC=12.
(1)求⊙O半徑;
(2)求證:DE為⊙O的切線;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com