【題目】如圖,AB⊙O的直徑,點C,D⊙O上,且點C的中點,過點 CAD的垂線 EF交直線 AD于點 E

1)求證:EF⊙O的切線;

2)連接BC,若AB=5,BC=3,求線段AE的長.

【答案】(1)證明見解析

(2)

【解析】

(1)連接OC,根據(jù)等腰三角形的性質(zhì)、平行線的判定得到OCAE,得到OCEF,根據(jù)切線的判定定理證明;

(2)根據(jù)勾股定理求出AC,證明AEC∽△ACB,根據(jù)相似三角形的性質(zhì)列出比例式,計算即可.

(1)證明:連接OC,

∵OA=OC,

∴∠OCA=∠BAC,

∵點C是的中點,

∴∠EAC=∠BAC,

∴∠EAC=∠OCA,

∴OC∥AE,

∵AE⊥EF,

∴OC⊥EF,即EF是⊙O的切線;

(2)解:∵AB為⊙O的直徑,

∴∠BCA=90°,

∴AC==4,

∵∠EAC=∠BAC,∠AEC=∠ACB=90°,

∴△AEC∽△ACB,

∴AE=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABAC,需說明ADC≌△AEB,可供添加的條件如下:①∠B=∠C,②ADAE,③∠ADC=∠AEB,④DCBE,選擇其中一個能使ADC≌△AEB,則成立的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,B為定點,定直線l//ABPl上一動點.點M,N分別為PAPB的中點,對于下列各值:

線段MN的長;

②△PAB的周長;

③△PMN的面積;

直線MNAB之間的距離;

⑤∠APB的大。

其中會隨點P的移動而變化的是( )

A. ②③ B. ②⑤ C. ①③④ D. ④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點上,連接,將沿直線翻折后,點恰好落在邊點處若,則點的距離是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,點上一點.

1)如圖,平分.求證:;

2)如圖,點在線段上,且,求證:

3)如圖,,過點作的延長線于點,連接,過點作,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣2x+8的圖象與x軸,y軸分別交于點A,點C,過點AABx軸,垂足為點A,過點CCBy軸,垂足為點C,兩條垂線相交于點B.

(1)線段AB,BC,AC的長分別為AB=   ,BC=   ,AC=   ;

(2)折疊圖1中的ABC,使點A與點C重合,再將折疊后的圖形展開,折痕DEAB于點D,交AC于點E,連接CD,如圖2.

請從下列A、B兩題中任選一題作答,我選擇   題.

A:①求線段AD的長;

②在y軸上,是否存在點P,使得APD為等腰三角形?若存在,請直接寫出符合條件的所有點P的坐標(biāo);若不存在,請說明理由.

B:①求線段DE的長;

②在坐標(biāo)平面內(nèi),是否存在點P(除點B外),使得以點A,P,C為頂點的三角形與ABC全等?若存在,請直接寫出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,AB=AC,以AC為直徑作⊙OBC于點D,過點D作⊙O的切線交AB于點E,交AC的延長線于點F

1)求證:DEAB;

2tanBDE=, CF=3,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題提出)

求證:如果一個定圓的內(nèi)接四邊形對角線互相垂直,那么這個四邊形每組對邊的平方和是一個定值.

(從特殊入手)

我們不妨設(shè)定圓O的半徑是R,O的內(nèi)接四邊形ABCD中,ACBD.請你在圖①中補(bǔ)全特殊位置時的圖形,并借助于所畫圖形探究問題的結(jié)論.

(問題解決)

已知:如圖②,定圓⊙O的半徑是R,四邊形ABCD是⊙O的內(nèi)接四邊形, ACBD.

求證:

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線,直線分別與,相交于點,小宇同學(xué)利用尺規(guī)按以下步驟作圖:①以點為圓心,以任意長為半徑作弧交于點,交于點②分別以為圓心,以大于,長為半徑作弧,兩弧在內(nèi)交于點;③作射線于點,若,則____________

查看答案和解析>>

同步練習(xí)冊答案