【題目】如圖,是一臺(tái)自動(dòng)測(cè)溫記錄儀記錄的圖象,它反映了我市春季氣溫T(℃)隨時(shí)間t(時(shí))變化而變化的關(guān)系,觀察圖象得到下列信息,其中錯(cuò)誤的是( )
A.凌晨4時(shí)氣溫最低為﹣5℃
B.14時(shí)氣溫最高為16℃
C.從0時(shí)至14時(shí),氣溫隨時(shí)間推移而上升
D.從14時(shí)至24時(shí),氣溫隨時(shí)間推移而下降
【答案】C
【解析】解:A、凌晨4時(shí)氣溫最低為﹣5℃,正確,不合題意;
B、14時(shí)氣溫最高為16℃,正確,不合題意;
C、應(yīng)為從4時(shí)至14時(shí),氣溫隨時(shí)間推移而上升,故此選項(xiàng)錯(cuò)誤,符合題意;
D、從14時(shí)至24時(shí),氣溫隨時(shí)間推移而下降,正確,不合題意;
故選:C.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用函數(shù)的圖象,掌握函數(shù)的圖像是由直角坐標(biāo)系中的一系列點(diǎn)組成;圖像上每一點(diǎn)坐標(biāo)(x,y)代表了函數(shù)的一對(duì)對(duì)應(yīng)值,他的橫坐標(biāo)x表示自變量的某個(gè)值,縱坐標(biāo)y表示與它對(duì)應(yīng)的函數(shù)值即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一矩形長(zhǎng)20 cm,寬10 cm,另一與它相似的矩形的一邊長(zhǎng)為10 cm,求另一邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)P(m,1﹣2m)的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù),則點(diǎn)P一定在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用兩個(gè)邊長(zhǎng)為a的等邊三角形紙片拼成的四邊形是( 。
A. 等腰梯形 B. 正方形 C. 矩形 D. 菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】足球比賽時(shí),守門(mén)員大腳開(kāi)出去的球的高度h隨時(shí)間t變化而變化,下列各圖中,能刻畫(huà)以上h與t的關(guān)系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】春天來(lái)了,小穎要用總長(zhǎng)為12米的籬笆圍一個(gè)長(zhǎng)方形花圃,其一邊靠墻(墻長(zhǎng)9米),另外三邊是籬笆,其中BC不超過(guò)9米.設(shè)垂直于墻的兩邊AB,CD的長(zhǎng)均為x米,長(zhǎng)方形花圃的面積為y米2 .
(1)用x表示花圃的一邊BC的長(zhǎng),判斷x=1是否符合題意,并說(shuō)明理由;
(2)求y與x之間的關(guān)系式;
根據(jù)關(guān)系式補(bǔ)充表格:
x(米) | … | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | … |
y(米2) | … | 13.5 | 16 | 17.5 | 17.5 | 13.5 | … |
觀察表中數(shù)據(jù),寫(xiě)出y隨x變化的一個(gè)特征: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為1的小正方形網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上,
(1)B點(diǎn)關(guān)于y軸的對(duì)稱(chēng)點(diǎn)坐標(biāo)為 ;
(2)將△ABC向右平移3個(gè)單位長(zhǎng)度得到△A1B1C1,請(qǐng)畫(huà)出△A1B1C1;
(3)在(2)的條件下,A1的坐標(biāo)為 ;
(4)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線AB∥CD,直線MN分別交AB、CD于M、N兩點(diǎn),若ME、NF分別是∠AMN、∠DNM的角平分線,試說(shuō)明:ME∥NF
解:∵AB∥CD,(已知)
∴∠AMN=∠DNM()
∵M(jìn)E、NF分別是∠AMN、∠DNM的角平分線,(已知)
∴∠EMN=∠AMN,
∠FNM=∠DNM (角平分線的定義)
∴∠EMN=∠FNM(等量代換)
∴ME∥NF()
由此我們可以得出一個(gè)結(jié)論:
兩條平行線被第三條直線所截,一對(duì)角的平分線互相 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com