【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P為邊BC上一動點,PE⊥AB于E,PF⊥AC于F,M為EF中點,則AM的最小值是 .
【答案】.
【解析】試題分析:根據(jù)矩形的性質就可以得出EF,AP互相平分,且EF=AP,根據(jù)垂線段最短的性質就可以得出AP⊥BC時,AP的值最小,即AM的值最小,由勾股定理求出BC,根據(jù)面積關系建立等式求出其解即可.
∵PE⊥AB,PF⊥AC,∠BAC=90°,∴∠EAF=∠AEP=∠AFP=90°,∴四邊形AEPF是矩形,
∴EF,AP互相平分.且EF=AP, ∴EF,AP的交點就是M點, ∵當AP的值最小時,AM的值就最小,
∴當AP⊥BC時,AP的值最小,即AM的值最。 ∵AP×BC=AB×AC, ∴AP×BC=AB×AC,
在Rt△ABC中,由勾股定理,得BC==10, ∵AB=6,AC=8, ∴10AP=6×8, ∴AP=
∴AM=,
科目:初中數(shù)學 來源: 題型:
【題目】2017年4月13日,某中學初三650名學生參加了中考體育測試,為了了解這些學生的體考成績,現(xiàn)從中抽取了50名學生的體考成績進行了分析,以下說法正確的是( )
A. 這50名學生是總體的一個樣本 B. 每位學生的體考成績是個體
C. 50名學生是樣本容量 D. 650名學生是總體
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列事件中屬于不可能確定事件的是( )
A. 在足球賽中,弱隊戰(zhàn)勝強隊
B. 長分別為3、5、9厘米的三條線段能圍成一個三角形
C. 拋擲一枚硬幣,落地后正面朝上
D. 任取兩個正整數(shù),其和大于1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班圍棋興趣小組的同學在一次活動時,他們用25粒圍棋擺成了如圖1所示圖案,甲、乙、丙3人發(fā)現(xiàn)了該圖案以下性質:
甲:這是一個中心對稱圖形;
乙:這是一個軸對稱圖形,且有4條對稱軸;
丙:這是一個軸對稱圖形,且每條對稱軸都經(jīng)過5粒棋子.
他們想,若去掉其中若干個棋子,上述性質能否仍具有呢?例如,去掉圖案正中間一粒棋子(如圖2,“×”表示去掉棋子),則甲、乙發(fā)現(xiàn)性質仍具有.
請你幫助一起進行探究:
(1)圖3中,請去掉4個棋子,使所得圖形僅保留甲所發(fā)現(xiàn)性質.
(2)圖4中,請去掉4個棋子,使所得圖形僅保留丙所發(fā)現(xiàn)性質.
(3)圖5中,請去掉若干個棋子(大于0且小于10),使所得圖形仍具有甲、乙、丙3人所發(fā)現(xiàn)性質.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“低碳環(huán)保,你我同行”.兩年來,揚州市區(qū)的公共自行車給市民出行帶來切實方便.電視臺記者在某區(qū)街頭隨機選取了市民進行調查,調查的問題是“您大概多久使用一次公共自行車?”,將本次調查結果歸為四種情況:A.每天都用;B.經(jīng)常使用;C.偶爾使用;D.從未使用.將這次調查情況整理并繪制如下兩幅統(tǒng)計圖如圖2:
根據(jù)圖中的信息,解答下列問題:
(1)本次活動共有 位市民參與調查;
(2)補全條形統(tǒng)計圖和扇形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中A項所對應的圓心角的度數(shù)為
(4)根據(jù)統(tǒng)計結果,若該區(qū)有46萬市民,請估算每天都用公共自行車的市民約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若關于x的一元二次方程4x2+4(a﹣1)x+a2﹣a﹣2=0沒有實數(shù)根.
(1)求實數(shù)a的取值范圍;
(2)化簡:﹣.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各組數(shù),屬于勾股數(shù)的是( )
A. 4,5,6 B. 5,10,13 C. 3,4,5 D. 8,39,40
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com