【題目】如圖,在直角坐標(biāo)系中有一直角三角形AOBO為坐標(biāo)原點,OA=1,tan∠BAO=3,將此三角形繞原點O逆時針旋轉(zhuǎn)90°,得到△DOC,拋物線y=ax2+bx+c經(jīng)過點AB、C

1)求拋物線的解析式;

2)若點P是第二象限內(nèi)拋物線上的動點,其橫坐標(biāo)為t,

設(shè)拋物線對稱軸lx軸交于一點E,連接PE,交CDF,求出當(dāng)△CEF△COD相似時,點P的坐標(biāo);

是否存在一點P,使△PCD的面積最大?若存在,求出△PCD的面積的最大值;若不存在,請說明理由.

【答案】1

2①P點的坐標(biāo)為:(﹣1,4)或(﹣23)。

當(dāng)t=﹣時,SPCD的最大值為。

【解析】試題分析:(1)由三角函數(shù)的定義可求得OB,再結(jié)合旋轉(zhuǎn)可得到A、B、C的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;

2①△COD為直角三角形,可知當(dāng)△CEF△COD相似時有兩種情況,即∠FEC=90°∠EFC=90°,當(dāng)PE⊥CE時,則可得拋物線的頂點滿足條件,當(dāng)PE⊥CD時,過PPG⊥x軸于點G,可證△PGE∽△COD,利用相似三角形的性質(zhì)可得到關(guān)于t的方程,可求得P點坐標(biāo);可求得直線CD的解析式,過PPN⊥x軸于點N,交CD于點M,可用t表示出PM的長,當(dāng)PM取最大值時,則△PCD的面積最大,可求得其最大值.

試題解析:(1∵OA=1tan∠BAO=3,

=3,解得OB=3

又由旋轉(zhuǎn)可得OB=OC=3,

∴A1,0),B0,3),C-3,0),

設(shè)拋物線解析式為y=ax2+bx+c,把A、B、C三點的坐標(biāo)代入可得

,解得

拋物線解析式為y=-x2-2x+3,

2由(1)可知拋物線對稱軸為x=-1,頂點坐標(biāo)為(-1,4),

∵△COD為直角三角形,

當(dāng)△CEF△COD相似時有兩種情況,即∠FEC=90°∠EFC=90°,

∠FEC=90°,則PE⊥CE,

對稱軸與x軸垂直,

此時拋物線的頂點即為滿足條件的P點,此時P點坐標(biāo)為(-1,4);

∠EFC=90°,則PE⊥CD,

如圖,過PPG⊥x軸于點G,

∠GPE+∠PEG=∠DCO+∠PEG,

∴∠GPE=∠OCD,且∠PGE=∠COD=90°

∴△PGE∽△COD,

∵E-1,0),Gt0),且P點橫坐標(biāo)為t,

∴GE=-1-t,PG=-t2-2t+3,

,解得t=-2t=3

∵P點在第二象限,

∴t0,即t=-2,

此時P點坐標(biāo)為(-2,3),

綜上可知滿足條件的P點坐標(biāo)為(-14)或(-23);

設(shè)直線CD解析式為y=kx+m

C、D兩點坐標(biāo)代入可得,解得,

直線CD解析式為y=x+1,

如圖2,過PPN⊥x軸,交x軸于點N,交直線CD于點M

∵P點橫坐標(biāo)為t,

∴PN=-t2-2t+3MN=t+1

∵P點在第二象限,

∴P點在M點上方,

∴PM=PN-MN=-t2-2t+3-t+1=-t2-t+2=-t+2+,

當(dāng)t=-時,PM有最大值,最大值為,

∵SPCD=SPCM+SPDM=PMCN+PMNO=PMOC=PM,

當(dāng)PM有最大值時,△PCD的面積有最大值,

SPCDmax=×=

綜上可知存在點P使△PCD的面積最大,△PCD的面積有最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南江縣在“創(chuàng)國家級衛(wèi)生城市”中,朝陽社區(qū)計劃對某區(qū)域進行綠化,經(jīng)投標(biāo),由甲、乙兩個工程隊來完成,已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且在獨立完成面積為400m2區(qū)域的綠化時,甲隊比乙隊少用4天.求甲、乙兩工程隊每天能完成綠化的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD相交于點OOE,OFOG分別是∠AOC,∠BOD,∠BOC的平分線,以下說法不正確的是(  )

A.DOF與∠COG互為余角

B.COG與∠AOG互為補角

C.射線OE,OF不一定在同一條直線上

D.射線OEOG互相垂直

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游泳館普通票價20/,暑假為了促銷,新推出兩種優(yōu)惠卡

金卡售價600/,每次憑卡不再收費

銀卡售價150/,每次憑卡另收10

暑假普通票正常出售兩種優(yōu)惠卡僅限暑假使用不限次數(shù).設(shè)游泳x次時所需總費用為y

(1)分別寫出選擇銀卡、普通票消費時,yx之間的函數(shù)關(guān)系式

(2)在同一坐標(biāo)系中,若三種消費方式對應(yīng)的函數(shù)圖象如圖所示,請求出點A、B、C的坐標(biāo);

(3)請根據(jù)函數(shù)圖象,直接寫出選擇哪種消費方式更合算

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午期間,小明、小亮等同學(xué)隨家長一同到某公園游玩,下面是購買門票時,小明與他爸爸的對話(如圖),試根據(jù)圖中的信息,解答下列問題:

(1)他們共去了幾個成人,幾個學(xué)生?

(2)請你幫助算算,小明用更省錢的購票方式是指什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y1=kx+by2=x+a的圖象如圖,則下列結(jié)論:①k0;②a0;③關(guān)于x的方程kxx=ab的解是x=3;④當(dāng)x3時,y1y2中.則正確的序號有________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知CO1ABC的中線,過點O1O1E1ACBC于點E1,連接AE1CO1于點O2;過點O2O2E2ACBC于點E2,連接AE2CO1于點O3;過點O3O3E3ACBC于點E3,如此繼續(xù),可以依次得到點O4,O5,On和點E4,E5,En.則OnEn=  AC.(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ABC90°∠ACB60°.將RtABC繞點C順時針方向旋轉(zhuǎn)后得到△DEC(△DEC≌△ABC),點EAC上,再將RtABC沿著AB所在直線翻轉(zhuǎn)180°得到△ABF,連接AD

(1)求證:四邊形AFCD是菱形;

(2)連接BE并延長交AD于點G,連接CG.請問:四邊形ABCG是什么特殊平行四邊形?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(選做題)包括兩個小題,請選定其中一個小題用一元一次方程作答

A.一根尼龍繩,小江第一次用去它的一半少米,第二次用去米,結(jié)果還剩下原來的,試問這根尼龍繩原來有多長?

B.小蘇、小江家相距千米且附近均設(shè)有火車站,一列慢車從小江家附近的火車站駛往小蘇家附近的火車站,速度為,一列快車從小蘇家附近的火車站駛往小江家附近的火車站,速度為,若兩車同時出發(fā),多少時間后兩車相距

查看答案和解析>>

同步練習(xí)冊答案