【題目】如圖1,AB為⊙O的直徑,AC與⊙O相切于點(diǎn)A,BC與⊙O交于點(diǎn)D,點(diǎn)F是直徑AB下方半圓上一點(diǎn)(不與A,B重合),連接DF,交AB于點(diǎn)E,
(1)求證:∠C=∠F;
(2)如圖2,若DF=DB,連接AF.
①求證:∠FAE=2∠AFE;
②作BH⊥FD于點(diǎn)G,與AF交于點(diǎn)H.若AH=2HF,CD=1,求BG的長(zhǎng).
【答案】(1)見解析;(2)①見解析;②
【解析】
(1)利用等角的余角相等以及圓周角定理即可解決問題.
(2)①如圖2中,連接DO,延長(zhǎng)DO交BF于K.想辦法證明AF∥DK,利用等腰三角形的性質(zhì)證明∠FDB=2∠AFD即可解決問題.
②如圖2中,設(shè)DK交BH于J,連接JF.首先證明四邊形AFJD是平行四邊形,推出,設(shè)GH=m,GJ=3m,則JH=JF=JB=4m,推出GF==m,由∠C=∠BFG,推出tanC=tan∠BFG===,求出AD即可解決問題.
解:(1)證明:如圖1中,
∵AC是切線,
∴AB⊥AC,
∴∠CAB=90°,
∵AB是直徑,
∴∠ADB=∠ADC=90°,
∵∠C+∠CAD=90°,∠CAD+∠DAB=90°,
∴∠C=∠DAB,
∵∠DAB=∠F,
∴∠C=∠F.
(2)①證明:如圖2中,連接DO,延長(zhǎng)DO交BF于K.
∵DF=DB,
∴,
∴DK⊥BF,
∴∠FDK=∠BDK,
∵AB是直徑,
∴∠AFB=∠DKB=90°,
∴DK∥AF,
∴∠AFD=∠FDK,
∴∠FDB=2∠AFD,
∵∠EAF=∠FDB,
∴∠EAF=2∠BDF.
②解:如圖2中,設(shè)DK交BH于J,連接JF.
∵DF=DB,DK⊥FB,
∴FK=BK,
∴JF=JB,
∴∠JFB=∠JBF,
∵∠JFB+∠JFH=90°,∠JBF+∠BHF=90°,
∴∠JFH=∠JHF,
∵DK⊥BF,BG⊥DF,
∴FJ⊥DB,
∵AD⊥BD,
∴AD∥FJ,
∵AF∥DJ,
∴四邊形AFJD是平行四邊形,
∵AH=2FH,
∴可以假設(shè)HF=a,AH=2a,
∴DJ=AF=3a,
∵FH∥DJ,
∴,設(shè)GH=m,GJ=3m,則JH=JF=JB=4m,
∴GF==m,
∵∠C=∠BFG,
∴tanC=tan∠BFG===,
∴=,
∵CD=1,
∴AD=FJ=BJ=,
∴4m=
∴m=,
∴BG=7m=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E是BC邊上的中點(diǎn),G為線段CD上一動(dòng)點(diǎn),連接BG,交AE于點(diǎn)F,若=m+1,則的值為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,AB⊥BC,點(diǎn)P是邊AD上一動(dòng)點(diǎn),將△ABP沿BP折疊得到△BEP,連接DE,CE,已知AB=4,AD=3,BC=6,則△CDE面積的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2﹣4與x軸交于點(diǎn)A,B(點(diǎn)A位于點(diǎn)B的左側(cè)),C為頂點(diǎn),直線y=x+m經(jīng)過點(diǎn)A,與y軸交于點(diǎn)D.
(1)求線段AD的長(zhǎng);
(2)平移該拋物線得到一條新拋物線,設(shè)新拋物線的頂點(diǎn)為C′.若新拋物線經(jīng)過點(diǎn)D,并且新拋物線的頂點(diǎn)和原拋物線的頂點(diǎn)的連線CC′平行于直線AD,求新拋物線對(duì)應(yīng)的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),對(duì)稱軸與軸交于點(diǎn),點(diǎn)在拋物線上.
(1)求直線的解析式.
(2)點(diǎn)為直線下方拋物線上的一點(diǎn),連接,.當(dāng)的面積最大時(shí),連接,,點(diǎn)是線段的中點(diǎn),點(diǎn)是線段上的一點(diǎn),點(diǎn)是線段上的一點(diǎn),求的最小值.
(3)點(diǎn)是線段的中點(diǎn),將拋物線與軸正方向平移得到新拋物線,經(jīng)過點(diǎn),的頂點(diǎn)為點(diǎn),在新拋物線的對(duì)稱軸上,是否存在點(diǎn),使得為等腰三角形?若存在,直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨機(jī)抽取某小吃店一周的營(yíng)業(yè)額(單位: 元)如下表:
星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 | 合計(jì) |
(1)分析數(shù)據(jù),填空:這組數(shù)據(jù)的平均數(shù)是 元,中位數(shù)是 元,眾數(shù)是 元.
(2)估計(jì)一個(gè)月(按天計(jì)算)的營(yíng)業(yè)額,星期一到星期五營(yíng)業(yè)額相差不大,用這天的平均數(shù)估算合適么?簡(jiǎn)要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一張矩形紙片中,對(duì)角線,點(diǎn)分別是和的中點(diǎn),現(xiàn)將這張紙片折疊,使點(diǎn)落在上的點(diǎn)處,折痕為,若的延長(zhǎng)線恰好經(jīng)過點(diǎn),則點(diǎn)到對(duì)角線的距離為( ).
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)參加“創(chuàng)文明城市”書畫比賽時(shí),老師從全校個(gè)班中隨機(jī)抽取了個(gè)班(用表示),對(duì)抽取的作品的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了兩幅不完整的統(tǒng)計(jì)圖.回答下列問題:
(1)老師采用的調(diào)查方式是 .(填“普查”或“抽樣調(diào)查”);
(2)請(qǐng)補(bǔ)充完整條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中班作品數(shù)量所對(duì)應(yīng)的圓心角度數(shù) 度.
(3)請(qǐng)估計(jì)全校共征集作品的件數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線分別交x軸、y軸于點(diǎn)B,C,正方形AOCD的頂點(diǎn)D在第二象限內(nèi),E是BC中點(diǎn),OF⊥DE于點(diǎn)F,連結(jié)OE,動(dòng)點(diǎn)P在AO上從點(diǎn)A向終點(diǎn)O勻速運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)Q在直線BC上從某點(diǎn)Q1向終點(diǎn)Q2勻速運(yùn)動(dòng),它們同時(shí)到達(dá)終點(diǎn).
(1)求點(diǎn)B的坐標(biāo)和OE的長(zhǎng);
(2)設(shè)點(diǎn)Q2為(m,n),當(dāng)tan∠EOF時(shí),求點(diǎn)Q2的坐標(biāo);
(3)根據(jù)(2)的條件,當(dāng)點(diǎn)P運(yùn)動(dòng)到AO中點(diǎn)時(shí),點(diǎn)Q恰好與點(diǎn)C重合.
①延長(zhǎng)AD交直線BC于點(diǎn)Q3,當(dāng)點(diǎn)Q在線段Q2Q3上時(shí),設(shè)Q3Q=s,AP=t,求s關(guān)于t的函數(shù)表達(dá)式.
②當(dāng)PQ與△OEF的一邊平行時(shí),求所有滿足條件的AP的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com