【題目】矩形ABCD中,AB2,AD4,將矩形ABCD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至矩形EGCF(其中E、GF分別與A、B、D對(duì)應(yīng)).

1)如圖1,當(dāng)點(diǎn)G落在AD邊上時(shí),直接寫(xiě)出AG的長(zhǎng)為   ;

2)如圖2,當(dāng)點(diǎn)G落在線段AE上時(shí),ADCG交于點(diǎn)H,求GH的長(zhǎng);

3)如圖3,記O為矩形ABCD對(duì)角線的交點(diǎn),S為△OGE的面積,求S的取值范圍.

【答案】142;(2;(34≤S≤4+

【解析】

1)在RtDCG中,利用勾股定理求出DG即可解決問(wèn)題;

2)首先證明AHCH,設(shè)AHCHm,則DHADHD4m,在RtDHC中,根據(jù)CH2CD2+DH2,構(gòu)建方程求出m即可解決問(wèn)題;

3)如圖,當(dāng)點(diǎn)G在對(duì)角線AC上時(shí),OGE的面積最小,當(dāng)點(diǎn)GAC的延長(zhǎng)線上時(shí),OE′G′的面積最大,分別求出面積的最小值,最大值即可解決問(wèn)題.

解:(1)如圖1中,

∵四邊形ABCD是矩形,

BCADCG4,∠D90°,

ABCD2,

DG2,

AGABBG42,

故答案為:42

2)如圖2中,

由四邊形CGEF是矩形,得到∠CGE90°,

∵點(diǎn)G在線段AE上,

∴∠AGC90°,

CACA,CBCG,

RtACGRtACBHL).

∴∠ACB=∠ACG

ABCD

∴∠ACG=∠DAC,

∴∠ACH=∠HAC

AHCH,設(shè)AHCHm,則DHADAH5m,

RtDHC中,∵CH2DC2+DH2,

m222+4m2,

m,

AH,GH

3)在Rt△ABC中,,,

由題可知,G點(diǎn)在以C點(diǎn)為圓心,BC為半徑的圓上運(yùn)動(dòng),且GE與該圓相切,因?yàn)?/span>GE=AB不變,所以O到直線GE的距離即為△OGE的高,當(dāng)點(diǎn)G在對(duì)角線AC上時(shí),OG最短,即OGE的面積最小,最小值=×OG×EG×2×4)=4

當(dāng)點(diǎn)GAC的延長(zhǎng)線上時(shí),OG最長(zhǎng),即OE′G′的面積最大.最大值=×E′G′×OG′×2×4+)=4+.

綜上所述,4≤S≤4+

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以A(0, )為圓心的圓與x軸相切于坐標(biāo)原點(diǎn)O,與y軸相交于點(diǎn)B,弦BD的延長(zhǎng)線交x軸的負(fù)半軸于點(diǎn)E,且∠BEO=60°,AD的延長(zhǎng)線交x軸于點(diǎn)C

(1)分別求點(diǎn)E、C的坐標(biāo);

(2)求經(jīng)過(guò)AC兩點(diǎn),且以過(guò)E而平行于y軸的直線為對(duì)稱(chēng)軸的拋物線的函數(shù)解析式;

(3)設(shè)拋物線的對(duì)稱(chēng)軸與AC的交點(diǎn)為M,試判斷以M點(diǎn)為圓心,ME為半徑的圓與⊙A的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將正方形OABC放在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)是(23),則C點(diǎn)坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,,點(diǎn),分別在,上,將沿折疊,使點(diǎn)落在上的點(diǎn)處,又將沿折疊,使點(diǎn)落在直線的交點(diǎn)處.

1)求證:點(diǎn)的角平分線上;

2)求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示的是寶雞市文化景觀標(biāo)志“天下第一燈”,它由國(guó)際不銹鋼板整體鍛造,表面涂有仿古金色漆,以仿青銅紋飾雕刻的柱體四盞燈分層布置.一天上午,數(shù)學(xué)興趣小組的同學(xué)們帶著測(cè)量工具來(lái)測(cè)量“天下第一燈”的高度,由于有圍欄保護(hù),他們無(wú)法到達(dá)燈的底部他們制定了一種測(cè)量方案,圖2所示的是他們測(cè)量方案的示意圖,先在周?chē)膹V場(chǎng)上選擇一點(diǎn)并在點(diǎn)處安裝了測(cè)量器在點(diǎn)處測(cè)得該燈的頂點(diǎn)P的仰角為;再在的延長(zhǎng)線上確定一點(diǎn)使米,在點(diǎn)處測(cè)得該燈的頂點(diǎn)的仰角為.若測(cè)量過(guò)程中測(cè)量器的高度始終為米,求“天下第一燈”的高度.,最后結(jié)果取整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某斜拉橋引申出的部分平面圖,AE,CD是兩條拉索,其中拉索CD與水平橋面BE的夾角為72°,其底端與立柱AB底端的距離BD4米,兩條拉索頂端距離AC2米,若要使拉索AE與水平橋面的夾角為35°,請(qǐng)計(jì)算拉索AE的長(zhǎng).(結(jié)果精確到0.1米)(參考數(shù)據(jù):sin35°≈,cos35°≈,tan35°≈,sin72°≈,cos72°≈,tan72°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖1,為正方形的中點(diǎn),,連接

1)求證:①;

;

2)如圖2,若,作,分別交于點(diǎn),,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,二次函數(shù)x軸于,,在y軸上有一點(diǎn),連接AE

求二次函數(shù)的表達(dá)式;

點(diǎn)D是第二象限內(nèi)的拋物線上一動(dòng)點(diǎn).

①求面積最大值并寫(xiě)出此時(shí)點(diǎn)D的坐標(biāo);

②若,求此時(shí)點(diǎn)D坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yax2+bx+c的圖象過(guò)點(diǎn)A1,2),B3,2),C5,7).若點(diǎn)M(﹣2,y1),N(﹣1,y2),K8,y3)也在二次函數(shù)yax2+bx+c的圖象上,則y1,y2y3從小到大的關(guān)系是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案