【題目】如圖, △ABC內(nèi)接于⊙O, AD⊥BC于D, AE是⊙O的直徑. 若AB=6, AC=8, AE=11, 求AD的長(zhǎng).
【答案】解:連接CE,則∠E=∠B,
∵AE是⊙O的直徑,
∴∠ACE=90°,
又∵AD⊥BC,
∴∠ACE=∠ADB=90°,
∴△ACE∽△ADB,
∴ ,
即 ,
解得AD=
【解析】根據(jù)直徑所對(duì)的圓周角是直角,得到∠ACE=90°,由AD⊥BC,得到△ACE∽△ADB,得到比例,求出AD的值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用圓周角定理和相似三角形的判定與性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于點(diǎn)D,PC=4,則PD的長(zhǎng)為( )
A. 2 B. 3 C. 4 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,對(duì)角線AC、BD相交于點(diǎn)O.
⑴若AB=BC,則是_______.
⑵若AC=BD,則是_________.
⑶若∠BCD=90°,則是_________.
⑷若OA=OB,且OA⊥OB,則是_________.
⑸若AB=BC,且AC=BD,則是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,折疊矩形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知折痕AE=5 cm,且tan∠EFC= ,則矩形ABCD的周長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為更好地推進(jìn)太原市生活垃圾分類(lèi)工作,改善城市生態(tài)環(huán)境,2019年12月17日,太原市政府召開(kāi)了太原市生活垃圾分類(lèi)推進(jìn)會(huì),意味著太原垃圾分類(lèi)戰(zhàn)役的全面打響.某小區(qū)準(zhǔn)備購(gòu)買(mǎi)A、B兩種型號(hào)的垃圾箱,通過(guò)市場(chǎng)調(diào)研得知:購(gòu)買(mǎi)3個(gè)A型垃圾箱和2個(gè)B型垃圾箱共需540元,購(gòu)買(mǎi)2個(gè)A型垃圾箱比購(gòu)買(mǎi)3個(gè)B型垃圾箱少用160元.
(1)求每個(gè)A型垃圾箱和B型垃圾箱各多少元?
(2)該小區(qū)物業(yè)計(jì)劃用不多于2100元的資金購(gòu)買(mǎi)A、B兩種型號(hào)的垃圾箱共20個(gè),則該小區(qū)最多可以購(gòu)買(mǎi)B型垃圾箱多少個(gè)?
(3)在(2)的條件下,要求至少購(gòu)買(mǎi)3個(gè)B型垃圾箱,請(qǐng)?jiān)O(shè)計(jì)出最省錢(qián)的購(gòu)買(mǎi)方案,并求出最少購(gòu)買(mǎi)費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】操作與探索:
已知點(diǎn)O為直線AB上一點(diǎn),作射線OC,將直角三角板ODE放置在直線上方(如圖①),使直角頂點(diǎn)與點(diǎn)O重合,一條直角邊OD重疊在射線OA上,將三角板繞點(diǎn)O旋轉(zhuǎn)
(1)當(dāng)三角板旋轉(zhuǎn)到如圖②的位置時(shí),若OD平分∠AOC,試說(shuō)明OE也平分∠BOC.
(2)若OC⊥AB,垂足為點(diǎn)O(如圖③),請(qǐng)直接寫(xiě)出與∠DOB互補(bǔ)的角
(3)若∠AOC=135°(如圖④),三角板繞點(diǎn)O按順時(shí)針從如圖①的位置開(kāi)始旋轉(zhuǎn),到OE邊與射線OB重合結(jié)束. 請(qǐng)通過(guò)操作,探索:在旋轉(zhuǎn)過(guò)程中,∠DOB∠COE的差是否發(fā)生變化?若不變,請(qǐng)求出這個(gè)差值;若變化,請(qǐng)用含有n(n為三角板旋轉(zhuǎn)的度數(shù))的代數(shù)式表示這個(gè)差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司銷(xiāo)售部有營(yíng)銷(xiāo)人員15人,銷(xiāo)售部為了制定某種商品的月銷(xiāo)售定額,統(tǒng)計(jì)了這15人某月的銷(xiāo)售如下:
每人銷(xiāo)售件數(shù) | 1800 | 510 | 250 | 210 | 150 | 120 |
人數(shù) | 1 | 1 | 3 | 5 | 3 | 2 |
(1)求這15位營(yíng)銷(xiāo)人員該月銷(xiāo)售量的平均數(shù)、中位數(shù)和眾數(shù).
(2)假設(shè)銷(xiāo)售部負(fù)責(zé)人把每位營(yíng)銷(xiāo)員的月銷(xiāo)售額定為320件,你認(rèn)為是否合理?為什么?如不合理,請(qǐng)你制定一個(gè)合理的銷(xiāo)售定額,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠A被平行直線l1、l2所截,若∠1=100°,∠2=125°,則∠A的度數(shù)是( ).
A.25°
B.30°
C.35°
D.45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】木工師傅要做一個(gè)如圖所示的窗框,上半部分是半圓,下半部分為六個(gè)大小一樣的長(zhǎng)方形,長(zhǎng)方形的長(zhǎng)和寬的比為.請(qǐng)你幫他計(jì)算:
(1)設(shè)長(zhǎng)方形的長(zhǎng)為米,用含的代數(shù)式表示所需材料的長(zhǎng)度為 (結(jié)果保留,重合部分忽略不計(jì))
(2)當(dāng)長(zhǎng)方形的長(zhǎng)為米時(shí),所需材料的長(zhǎng)度是多少?(精確到米,其中)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com