【題目】在正方形網(wǎng)格中,建立如圖所示的平面直角坐標系xOy,ABC的三個頂點都在格點上,點A的坐標(4,4),請解答下列問題:

(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1,并寫出點A1、B1、C1的坐標;

(2)將△ABC繞點C逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A2B2C2,并求出點AA2的路徑長.

【答案】(1)如圖見解析;A1(﹣4,4)、B1(﹣1,1)、C1(﹣3,1);(2)

【解析】試題分析:1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點關(guān)于軸的對稱點 A1B1、C1的位置,然后順次連接即可,再根據(jù)平面直角坐標系寫出坐標即可;
2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點繞點C逆時針旋轉(zhuǎn)90°的對應點的位置,然后順次連接即可,根據(jù)弧長公式求出點AA2的路徑長.

試題解析:1)如圖所示, 即為所求,

2)如圖所示, 即為所求,

∴點AA2的路徑長為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC,點D,E分別在AC,AB上,且ADAE,點OBDCE的交點,則:①△ABD≌△ACE;②△BOE≌△COD;③點O在∠BAC的平分線上,以上結(jié)論(  )

A.都正確B.都不正確

C.只有一個正確D.只有一個不正確

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的半徑AB是弦,直線EF經(jīng)過點B,于點C

求證:EF的切線;

,求AB的長;

的條件下,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】單位組織員工自駕游,并打算在一家租車公司租用同一品牌同款的5座或7座越野車組成一個車隊.該租車公司同品牌同款的7座越野車的日租金比5座的多300元.已知該單位參加自駕游的員工共有40人,其中10人可以擔任司機,但這10人中至少需要留出3人做為機動司機,以備輪換替代.

1)有人建議租85座的越野車,剛好可以載40人.他的建議合理嗎?請說明理由;

2)請為該單位設(shè)計一種租車方案,使車隊租車的日租金最少,并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,分別為數(shù)軸上的兩點,點對應的數(shù)是,點對應的數(shù)為80.

1)請直接寫出的中點對應的數(shù).

2)現(xiàn)在有一只電子螞蟻點出發(fā),以2個單位/秒的速度向左運動,同時另一只電子螞蟻恰好從點出發(fā),以3個單位/秒的速度向右運動,設(shè)兩只電子螞蟻在數(shù)軸上的點相遇.請解答下面問題:

①試求出點在數(shù)軸上所對應的數(shù);

②何時兩只電子螞蟻在數(shù)軸上相距15個單位長度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】操作:將一把三角尺放在邊長為1的正方形ABCD上,并使它的直角頂點P在對角線AC上滑動,直角的一邊始終經(jīng)過點B,另一邊與射線DC相交于點Q,設(shè)A、P兩點間的距離為x

探究:

1)當點Q在邊CD上時,線段PQ與線段PB之間有怎樣的大小關(guān)系?試證明你觀察到的結(jié)論;

2)當點Q在邊CD上時,設(shè)四邊形PBCQ的面積為y,求yx之間的函數(shù)關(guān)系式,并寫出x的取值范圍;(3)當點P在線段AC上滑動時,△PCQ是否能成為等腰三角形?如果可能,指出所有能使△PCQ成為等腰三角形的點Q的位置,并求出相應x的值;如果不可能,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,ADBC,AB=DC,ACBD于點O,梯形的高為10cm,求梯形中位線的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,Ax軸上,A(4,0),By軸上,且B(0,4).

(1)求線段AB的長;

(2)若點E在線段AB,OEOF,OE=OF,AE+AF的值;

(3)在(2)的條件下,過OOMEF,ABM,試確定線段BE、EMAM之間的數(shù)量關(guān)系?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b的圖象與反比例函數(shù)y的圖象交于A(﹣21),B1,n)兩點.

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)根據(jù)圖象寫出一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

同步練習冊答案