精英家教網 > 初中數學 > 題目詳情
已知,如圖所示拋物線與x的兩個交點分別為A(1,0),B(3,0)。

(1)求拋物線的解析式;
(2)設點P在該拋物線上滑動,且滿足條件S△PAB = 1這樣的點P有幾個?并求出所有點P 的坐標;
(3)設拋物線交y軸于點C,問該拋物線對稱軸上是否存在點M,使得△MAC的周長最。舸嬖,求出點M的坐標;若不存在,請說明理由.
解:(1)  


(2)如圖,設P(x,y)

  
  

  

∴滿足條件的點P坐標有三個:

(3)最小。
過點C作拋物線的對稱軸的對稱點C' 
 
 
  

(1)將A(1,0),B(3,0)代入拋物線中,列方程組可求拋物線解析式;
(2)由于AB=3-1=2,而SPAB=1,故△PAB中,AB邊上的高為1,即P點縱坐標為,代入拋物線解析式可求P點橫坐標;
(3)過點C作拋物線的對稱軸的對稱點C',根據拋物線的對稱性求得C′(4,-3),連接直線AC′,求直線AC′的解析式,直線AC′與對稱軸的交點即為所求點M.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

已知二次函數中,m為不小于0的整數,它的圖像與x軸交于點A和點B,點A在原點左邊,點B在原點右邊.
(1)求這個二次函數的解析式;
(2)點C是拋物線與軸的交點,已知AD=AC(D在線段AB上),有一動點P從點A出發(fā),沿線段AB以每秒1個單位長度的速度移動,同時,另一動點Q從點C出發(fā),以某一速度沿線段CB移動,經過t秒的移動,線段PQ被CD垂直平分,求t的值;
(3)在(2)的情況下,求四邊形ACQD的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線的圖象與x軸交于A、B兩點,與y軸交于C點,已知B點坐標為(4,0).

(1)求拋物線的解析式;
(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標;
(3)若點M是線段BC下方的拋物線上一點,求△MBC的面積的最大值,并求出此時M點的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(﹣1,0),C(2,3)兩點,與y軸交于點N.其頂點為D.

(1)拋物線及直線AC的函數關系式;
(2)設點M(3,m),求使MN+MD的值最小時m的值;
(3)若拋物線的對稱軸與直線AC相交于點B,E為直線AC上的任意一點,過點E作EF∥BD交拋物線于點F,以B,D,E,F為頂點的四邊形能否為平行四邊形?若能,求點E的坐標;若不能,請說明理由;
(4)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,半徑為1的圓的圓心在坐標原點,且與兩坐標軸分別交于四點.拋物線軸交于點,與直線交于點,且分別與圓相切于點和點
(1)求拋物線的解析式;
(2)拋物線的對稱軸交軸于點,連結,并延長交圓,求的長.
(3)過點作圓的切線交的延長線于點,判斷點是否在拋物線上,說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

若二次函數的圖像過三點,則大小關系正確的是()
A.B.C.D.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

要從拋物線的圖象得到的圖象,則拋物線必須 ( )
A.向上平移1個單位;B.向下平移1個單位;
C.向左平移1個單位;D.向右平移1個單位.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知拋物線y=ax2+4ax+m(a≠0)與x軸的交點為A(-1,0),B(x2,0)。
(1)直接寫出一元二次方程ax2+4ax+m=0的兩個根:x1 =         , x=       
(2)原拋物線與y軸交于C點,CD∥x軸交拋物線于D點,求CD的值;
(3)若點E(1,y1),點F(-3,y2)在原拋物線上,你能比較出y2和y1; 的大小嗎?若能,請比較出大小,若不能,請說明理由。

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

已知拋物線與x軸相交時兩交點間的線段長為4,則m的值是    。

查看答案和解析>>

同步練習冊答案