【題目】為了提高學(xué)生書寫漢字的能力,增強(qiáng)保護(hù)漢字的意識(shí),我市舉辦了首屆漢字聽寫大賽,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時(shí)聽寫50個(gè)漢字,若每正確聽寫出一個(gè)漢字得1分,根據(jù)測(cè)試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:

組別

成績x分

頻數(shù)人數(shù)

第1組

25x<30

6

第2組

30x<35

8

第3組

35x<40

16

第4組

40x<45

a

第5組

45x<50

10

請(qǐng)結(jié)合圖表完成下列各題:

1求表中a的值;2請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整;

3第5組10名同學(xué)中,有4名男同學(xué),現(xiàn)將這10名同學(xué)平均分成兩組進(jìn)行對(duì)抗練習(xí),且4名男同學(xué)每組分兩人,求小宇與小強(qiáng)兩名男同學(xué)能分在同一組的概率.

【答案】1、10;2、答案見解析;3、.

【解析】

試題分析:1、根據(jù)利用總數(shù)減去其余四組的人數(shù)得出a的值;2、根據(jù)統(tǒng)計(jì)表將條形統(tǒng)計(jì)圖補(bǔ)充完整;3、首先畫出樹狀圖,然后得出概率.

試題解析:1表中a的值是:a=50681610=10;

2、根據(jù)題意畫圖如下:

3、用A表示小宇B表示小強(qiáng),C、D表示其他兩名同學(xué),

根據(jù)題意畫樹狀圖如下:

從上圖可知共有12種等可能情況,小宇與小強(qiáng)兩名男同學(xué)分在同一組的情況有4種,則小宇與小強(qiáng)兩名男同學(xué)分在同一組的概率是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以直線AB上一點(diǎn)O為端點(diǎn)作射線OC,使∠AOC65°,將一個(gè)直角三角形的直角頂點(diǎn)放在點(diǎn)O處.(注:∠DOE90°)

1)如圖,若直角三角板DOE的一邊OD放在射線OA上,則∠COE   ;

2)如圖,將直角三角板DOE繞點(diǎn)O順時(shí)針方向轉(zhuǎn)動(dòng)到某個(gè)位置,若OC恰好平分∠AOE,求∠COD的度數(shù);

3)如圖,將直角三角板DOE繞點(diǎn)O任意轉(zhuǎn)動(dòng),如果OD始終在∠AOC的內(nèi)部,試猜想∠AOD和∠COE有怎樣的數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一拱橋的截面呈拋物線形狀,拋物線兩端點(diǎn)與水面的距離都是1m,拱橋的跨度為10m,拱橋與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m景觀燈.

1)求拋物線的解析式;

2)求兩盞景觀燈之間的水平距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的兩邊在坐標(biāo)軸上,點(diǎn)A的坐標(biāo)為(10,0),拋物線y=ax2+bx+4過點(diǎn)BC兩點(diǎn),且與x軸的一個(gè)交點(diǎn)為D(﹣2,0),點(diǎn)P是線段CB上的動(dòng)點(diǎn),設(shè)CP=t(0<t<10).

(1)請(qǐng)直接寫出B、C兩點(diǎn)的坐標(biāo)及拋物線的解析式;

(2)過點(diǎn)PPEBC,交拋物線于點(diǎn)E,連接BE,當(dāng)t為何值時(shí),∠PBE=OCD

(3)點(diǎn)Qx軸上的動(dòng)點(diǎn),過點(diǎn)PPMBQ,交CQ于點(diǎn)M,作PNCQ,交BQ于點(diǎn)N,當(dāng)四邊形PMQN為正方形時(shí),請(qǐng)求出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿AE折疊,點(diǎn)D的對(duì)應(yīng)點(diǎn)落在BC上點(diǎn)F處,過點(diǎn)FFGCD,連接EF,DG,下列結(jié)論中正確的有( 。

①∠ADG=AFG;②四邊形DEFG是菱形;③DG2=AEEG;④若AB=4AD=5,則CE=1

A. ①②③④ B. ①②③ C. ①③④ D. ①②

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,ABC中,ACB=90°,AC=BC,點(diǎn)E是BC上一點(diǎn),連接AE.

(1)如圖1,當(dāng)∠BAE=15°,CE=時(shí),求AB的長.

(2)如圖2,延長BC至D,使DC=BC,將線段AE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得線段AF,連接DF,過點(diǎn)B作BGBC,交FC的延長線于點(diǎn)G,求證:BG=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)閱讀材料,解決問題.

數(shù)n是一個(gè)三位數(shù),各數(shù)位上的數(shù)字互不相同,且都不為零,從它各數(shù)位上的數(shù)字中任選兩個(gè)構(gòu)成一個(gè)兩位數(shù),這樣就可以得到六個(gè)不同的兩位數(shù),我們把這六個(gè)不同的兩位數(shù)叫做數(shù)n的“生成數(shù)”.?dāng)?shù)n的所有“生成數(shù)”之和與22的商記為G(n),例如n=123,它的六個(gè)“生成數(shù)”是12,13,21,23,31,32,這六個(gè)“生成數(shù)”的和12+13+21+23+31+32=132,132÷22=6,所以G(123)=6.

(1)計(jì)算:G(125),G(746);

(2)數(shù)s,t是兩個(gè)三位數(shù),它們都有“生成數(shù)”,a,1,4分別是s的百位、十位、個(gè)位上的數(shù)字,x,y,6分別是t的百位、十位、個(gè)位上的數(shù)字,規(guī)定:k=,若G(s)G(t)=84,求k的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條筆直的高速公路上依次有3個(gè)標(biāo)志點(diǎn)A、B、C,甲、乙兩車分別從A、C兩點(diǎn)同時(shí)出發(fā),勻速行駛,甲車從A→B→C,乙車從C→B→A,甲、乙兩車離B的距離y1、y2(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系圖象如圖所示.觀察圖象,給出下列結(jié)論:①A、C之間的路程為690千米;②乙車比甲車每小時(shí)快30千米;③4.5小時(shí)兩車相遇;④點(diǎn)E的橫坐標(biāo)表示兩車第二次相遇的時(shí)間;⑤點(diǎn)E的坐標(biāo)為(7,180)其中正確的有________(把所有正確結(jié)論的序號(hào)都填在橫線上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,完成任務(wù):

自相似圖形

定義:若某個(gè)圖形可分割為若干個(gè)都與它相似的圖形,則稱這個(gè)圖形是自相似圖形.例如:正方形ABCD中,點(diǎn)E、F、G、H分別是AB、BC、CD、DA邊的中點(diǎn),連接EG,HF交于點(diǎn)O,易知分割成的四個(gè)四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.

任務(wù):

(1)圖1中正方形ABCD分割成的四個(gè)小正方形中,每個(gè)正方形與原正方形的相似比為   

(2)如圖2,已知ABC中,ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)ABC也是“自相似圖形”,他的思路是:過點(diǎn)C作CDAB于點(diǎn)D,則CD將ABC分割成2個(gè)與它自己相似的小直角三角形.已知△ACD∽△ABC,則ACD與ABC的相似比為   ;

(3)現(xiàn)有一個(gè)矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).

請(qǐng)從下列A、B兩題中任選一條作答:我選擇   題.

A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個(gè)全等矩形,且與原矩形都相似,則a=   (用含b的式子表示);

如圖3﹣2若將矩形ABCD縱向分割成n個(gè)全等矩形,且與原矩形都相似,則a=   (用含n,b的式子表示);

B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個(gè)全等矩形,再將剩余的部分橫向分割成3個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含b的式子表示);

如圖4﹣2,若將矩形ABCD先縱向分割出m個(gè)全等矩形,再將剩余的部分橫向分割成n個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含m,n,b的式子表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案