【題目】沿翻折,頂點(diǎn)均落在點(diǎn)處,且重合于線段,若,則的度數(shù)(

A. 40°B. 37°C. 36°D. 32°

【答案】B

【解析】

如圖,連接AOBO.由題意EA=EB=EO,推出∠AOB=90°,∠OAB+OBA=90°,由DO=DA,FO=FB,推出∠DAO=DOA,∠FOB=FBO,推出∠CDO=2DAO,∠CFO=2FBO,由∠CDO+CFO=106°,推出2DAO+2FBO=106°,推出∠DAO+FBO=53°,由此即可解決問題.

解:如圖,連接AO、BO

由題意EA=EB=EO,
∴∠AOB=90°,∠OAB+OBA=90°,
DO=DA,FO=FB,
∴∠DAO=DOA,∠FOB=FBO,
∴∠CDO=2DAO,∠CFO=2FBO,
∵∠CDO+CFO=106°
2DAO+2FBO=106°
∴∠DAO+FBO=53°,
∴∠CAB+CBA=DAO+OAB+OBA+FBO=143°
∴∠C=180°-(∠CAB+CBA=180°-143°=37°,

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A市正北300km處有B市,(1)A市為原點(diǎn),東西方向的直線為x軸,南北方向的直線為y軸,并以100km1個單位建立平面直角坐標(biāo)系.

(2)根據(jù)氣象臺預(yù)報,今年7號臺風(fēng)中心位置現(xiàn)在C(5,2)處,并以60千米/時的速度自東向西移動,臺風(fēng)影響范圍半徑為200km,問經(jīng)幾小時后,B市將受到臺風(fēng)影響?并畫出示意圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】畫圖并填空:如圖,方格紙中每個小正方形的邊長都為1.在方格紙內(nèi)將ABC經(jīng)過一次平移后得到A′B′C′,圖中標(biāo)出了點(diǎn)D的對應(yīng)點(diǎn)D′.

(1)根據(jù)特征畫出平移后的A′B′C′;

(2)利用網(wǎng)格的特征,畫出AC邊上的高BE并標(biāo)出畫法過程中的特征點(diǎn);

(3)A′B′C′的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索與應(yīng)用.先填寫下表,通過觀察后再回答問題:

a

0.0001

0.01

1

100

10000

0.01

x

1

y

100

1)表格中x=   ;y=   ;

2)從表格中探究a數(shù)位的規(guī)律,并利用這個規(guī)律解決下面兩個問題:

①已知≈3.16,則   ;②已知=1.8,若=180,則a=   ;

3)拓展:已知,若,則b=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,現(xiàn)分別旋轉(zhuǎn)兩個標(biāo)準(zhǔn)的轉(zhuǎn)盤,則轉(zhuǎn)盤所轉(zhuǎn)到的兩個數(shù)字之積為奇數(shù)的概率是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的面積為40cm2,AEEDBD3DC,則圖中AEF的面積等于______cm2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖平行四邊形ABCD中,對角線AC,BD交于點(diǎn)O,EF過點(diǎn)O,并與AD,BC分別交于點(diǎn)E,F(xiàn),已知AE=3,BF=5

(1)求BC的長;

(2)如果兩條對角線長的和是20,求三角形AOD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平面直角坐標(biāo)系中,拋物線y=ax2+bx+3與x軸的兩個交點(diǎn)分別為A(﹣3,0),B(1,0),與y軸的交點(diǎn)為D,對稱軸與拋物線交于點(diǎn)C,與x軸負(fù)半軸交于點(diǎn)H.

(1)求拋物線的表達(dá)式;
(2)點(diǎn)E,F(xiàn)分別是拋物線對稱軸CH上的兩個動點(diǎn)(點(diǎn)E在點(diǎn)F上方),且EF=1,求使四邊形BDEF的周長最小時的點(diǎn)E,F(xiàn)坐標(biāo)及最小值;
(3)如圖2,點(diǎn)P為對稱軸左側(cè),x軸上方的拋物線上的點(diǎn),PQ⊥AC于點(diǎn)Q,是否存在這樣的點(diǎn)P使△PCQ與△ACH相似?若存在請求出點(diǎn)P的坐標(biāo),若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC三個頂點(diǎn)的坐標(biāo)分別為:A1,﹣4),B5,﹣4),C4,﹣1).

1)將ABC經(jīng)過平移得到A1B1C1,若點(diǎn)C的應(yīng)點(diǎn)C1的坐標(biāo)為(2,5),寫出點(diǎn)A,B的對應(yīng)點(diǎn)A1,B1的坐標(biāo);

2)在如圖的坐標(biāo)系中畫出A1B1C1,并畫出與A1B1C1關(guān)于原點(diǎn)O成中心對稱的A2B2C2

查看答案和解析>>

同步練習(xí)冊答案