【題目】如圖1,已知△ABC中,∠BAC=90°,AB=AC,AE是過A的一條直線,且B、C在A、E的異側(cè),BD⊥AE于D,CE⊥AE于E.
(1)求證:BD=DE+CE;
(2)若直線AE繞A點旋轉(zhuǎn)到圖2位置時(BD<CE),其余條件不變,則BD與DE、CE的數(shù)量關(guān)系如何?請予以證明;
(3)若直線AE繞A點旋轉(zhuǎn)到圖3位置時(BD>CE),其余條件不變,問BD與DE、CE的關(guān)系如何?請直接寫出結(jié)果,不需說明理由;
(4)根據(jù)以上的討論,請用簡潔的語言表述BD與DE、CE的數(shù)量關(guān)系.
【答案】
(1)
證明:∵∠BAC=90°,
∴∠BAD+∠EAC=90°,
又∵BD⊥AE,CE⊥AE,
∴∠BDA=∠AEC=90°,
∠BAD+∠ABD=90°,
∴∠ABD=∠EAC,
在△ABD與△CAE中,
,
∴△ABD≌△CAE,
∴BD=AE,AD=CE,
∵AE=AD+DE=CE+DE,
∴BD=DE+CE
(2)
證明:∵∠BAC=90°,
∴∠BAD+∠EAC=90°,
又∵BD⊥AE,CE⊥AE,
∴∠BDA=∠AEC=90°,
∠BAD+∠ABD=90°,
∴∠ABD=∠EAC,
在△ABD與△CAE中,
,
∴△ABD≌△CAE,
∴BD=AE,AD=CE,
∵DE=AD+AE=CE+BD,
∴DE=BD+CE
(3)
證明:∵∠BAC=90°,
∴∠BAD+∠EAC=90°,
又∵BD⊥AE,CE⊥AE,
∴∠BDA=∠AEC=90°,
∠BAD+∠ABD=90°,
∴∠ABD=∠EAC,
在△ABD與△CAE中,
,
∴△ABD≌△CAE,
∴BD=AE,AD=CE,
∵DE=AD+AE=BD+CE,
∴DE=BD+CE
(4)
證明:BD與CE的和等于DE或BD等于DE與CE的和
【解析】(1)證明△ABD≌△CAE,即可證得BD=AE,AD=CE,而AE=AD+DE=CE+DE,即可證得;(2)(3)圖形變換了,但是(1)中的全等關(guān)系并沒有改變,因而BD與DE、CE的關(guān)系并沒有改變;(4)把BD與DE、CE的關(guān)系用語言表述出來即可.
【考點精析】解答此題的關(guān)鍵在于理解等腰直角三角形的相關(guān)知識,掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分8分)某藥品研究所開發(fā)一種抗菌新藥,經(jīng)多年動物實驗,首次用于臨床人體實驗.測得成人服藥后血液中藥物深度(微克/毫升)與服藥時間小時之間的函數(shù)關(guān)系如圖所示(當(dāng)時,與成反比).
(1)根據(jù)圖象分別求出血液中藥物濃度上升和下降階段與之間的函數(shù)關(guān)系式;
(2)問血液中藥物濃度不低于4微克/毫升的持續(xù)時間為多少小時?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列對正方形的描述錯誤的是( )
A. 正方形的四個角都是直角 B. 正方形的對角線互相垂直
C. 鄰邊相等的矩形是正方形 D. 對角線相等的平行四邊形是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx+b中,k<0,b<0,則函數(shù)不經(jīng)過下列選項中的那個象限( 。
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線l1:y1=x1+2和直線l2:y2=﹣x2+4相交于點A,分別于x軸相交于點B和點C,分別與y軸相交于點D和點E.
(1)在平面直角坐標(biāo)系中按照列表、描點、連線的方法畫出直線l1和l2的圖象,并寫出A點的坐標(biāo).
(2)求△ABC的面積.
(3)求四邊形ADOC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com