【題目】如圖,四邊形ABCD是正方形,△ADF按順時針方向旋轉(zhuǎn)一定角度后得到△ABE,若AF=4.AB=7.
(1)旋轉(zhuǎn)中心為;旋轉(zhuǎn)角度為;
(2)求DE的長度;
(3)指出BE與DF的關系如何?并說明理由.
【答案】
(1)點A;90°
(2)解:∵△ADF按順時針方向旋轉(zhuǎn)一定角度后得到△ABE,
∴AE=AF=4,AD=AB=7,
∴DE=AD﹣AE=7﹣4=3
(3)解:BE、DF的關系為:BE=DF,BE⊥DF.理由如下:
∵△ADF按順時針方向旋轉(zhuǎn)一定角度后得到△ABE,
∴△ABE≌△ADF,
∴BE=DF,∠ABE=∠ADF,
∵∠ADF+∠F=180°﹣90°=90°,
∴∠ABE+∠F=90°,
∴BE⊥DF,
∴BE、DF的關系為:BE=DF,BE⊥DF
【解析】解:(1)旋轉(zhuǎn)中心為點A,旋轉(zhuǎn)角為∠BAD=90°;
【考點精析】解答此題的關鍵在于理解正方形的性質(zhì)的相關知識,掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形,以及對旋轉(zhuǎn)的性質(zhì)的理解,了解①旋轉(zhuǎn)后對應的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△OAB的頂點A(﹣2,4)在拋物線y=ax2上,將Rt△OAB繞點O順時針旋轉(zhuǎn)90°,得到△OCD,邊CD與該拋物線交于點P,則點P的坐標為( )
A.( , )
B.(2,2)
C.( ,2)
D.(2, )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC繞點A順時針旋轉(zhuǎn)45°得到△AB′C′,若∠BAC=90°,AB=AC= ,則圖中陰影部分的面積等于 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角頂點C為旋轉(zhuǎn)中心,將△ABC旋轉(zhuǎn)到△A′B′C的位置,其中A′、B′分別是A、B的對應點,且點B在斜邊A′B′上,直角邊CA′交AB于D,則旋轉(zhuǎn)角等于( )
A.70°
B.80°
C.60°
D.50°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=80°,AB的垂直平分線交對角線AC于點F,點E為垂足,連接DF,則∠CDF為( )
A.80°
B.70°
C.65°
D.60°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,先把一矩形ABCD紙片上下對折,設折痕為MN;如圖②,再把點B 疊在折痕線MN上,得到Rt△ABE.過B點作PQ⊥AD,分別交BC、AD于點P、Q.
(1)求證:△PBE∽△QAB;
(2)在圖②中,EB是否平分∠AEC?請說明理由;
(3)在(1)(2)的條件下,若AB=4,求PE的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A的坐標為(0,1),點B是x軸正半軸上的一動點,以AB為邊作等腰直角△ABC,使∠BAC=90°,取BC的中點P.當點B從點O向x軸正半軸移動到點M(2,0)時,則點P移動的路線長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com