(2口口少•荊門)9開4向上4拋物線與x軸交于g(m-2,口),B(m+2,口)兩點,記拋物線頂點為C,且gC⊥BC.
(你)若m為常數(shù),求拋物線4解析式;
(2)若m為小于口4常數(shù),那么(你)中4拋物線經(jīng)過怎么樣4平移可以使頂點在坐標原點;
(右)設拋物線交三軸正半軸于下點,問是否存在實數(shù)m,使得△BO下為等腰三角形?若存在,求出m4值;若不存在,請說明理由.
(1)設拋物線的解析式為:y=a(x-m+8)(x-m-8)=a(x-m)8-qa.(8分)
∵AC⊥BC,由拋物線的對稱性可知:△ACB是等腰直角三角形,又AB=q,
∴C(m,-8)代入ka=
1
8

∴解析式為:y=
1
8
(x-m)8-8.(z分)
(亦可求C點,設頂點式)

(8)∵m為q于零的常數(shù),
∴只需將拋物線向右平移|m|個單位,再向8平移8個單位,可以使拋物線y=
1
8
(x-m)8-8頂點在坐標原點.(7分)

(3)由(1)kD(0,
1
8
m8-8),設存在實數(shù)m,使k△BOD等腰三角形.
∵△BOD為直角三角形,
∴只能OD=OB.(k分)
1
8
m8-8=|m+8|,當m+8>0時,解km=q或m=-8(舍).
當m+8<0時,解km=0或m=-8(舍);
∵m=0時,D點坐標為(0,-8),在y軸的負半軸,
∴m=0舍去;
當m=-8,D點坐標為(0,0),也不合題意舍去;
當m+8=0時,即m=-8時,B、O、D三點重合(不合題意,舍)
綜8所述:存在實數(shù)m=q,使k△BOD為等腰三角形.(18分)
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c經(jīng)過A,B,C三點,當x≥0時,其圖象如圖所示.
(1)求拋物線的解析式,寫出拋物線的頂點坐標;
(2)畫出拋物線y=ax2+bx+c當x<0時的圖象;
(3)利用拋物線y=ax2+bx+c,寫出x為何值時,y>0.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=(t+1)x2+2(t+2)x+
3
2
在x=0和x=2時的函數(shù)值相等.
(1)求二次函數(shù)的解析式;
(2)若一次函數(shù)y=kx+6的圖象與二次函數(shù)的圖象都經(jīng)過點A(-3,m),求m和k的值;
(3)設二次函數(shù)的圖象與x軸交于點B,C(點B在點C的左側(cè)),將二次函數(shù)的圖象在點B,C間的部分(含點B和點C)向左平移n(n>0)個單位后得到的圖象記為G,同時將(2)中得到的直線y=kx+6向上平移n個單位.請結(jié)合圖象回答:當平移后的直線與圖象G有公共點時,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸相交于點C.連接AC,BC,A(-3,0),C(0,
3
),且當x=-4和x=2時二次函數(shù)的函數(shù)值y相等.
(1)求拋物線的解析式;
(2)若點M、N同時從B點出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運動,其中一個點到達終點時,另一點也隨之停止運動.
①當運動時間為t秒時,連接MN,將△BMN沿MN翻折,B點恰好落在AC邊上的P處,求t的值及點P的坐標;
②拋物線的對稱軸上是否存在點Q,使得以B、N、Q為頂點的三角形與△A0C相似?如果存在,請直接寫出點Q的坐標;如果不存在,請說明理由.
③當運動時間為t秒時,連接MN,將△BMN沿MN翻折,得到△PMN.并記△PMN與△AOC的重疊部分的面積為S.求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C(0,3),過點C作x軸的平行線與拋物線交于點D,拋物線的頂點為M,直線y=x+5經(jīng)過D、M兩點.
(1)求此拋物線的解析式;
(2)連接AM、AC、BC,試比較∠MAB和∠ACB的大小,并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線與x交于A(-1,0)、E(3,0)兩點,與y軸交于點B(0,3).
(1)求拋物線的解析式;
(2)設拋物線頂點為D,△AOB與△DBE是否相似?如果相似,請給以證明;如果不相似,請說明理由.
(3)若點P為第一象限拋物線上一動點,連接BP、PE,求四邊形ABPE面積的最大值,并求此時P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=mx2+nx+p與y=x2+6x+5關(guān)于y軸對稱,與y軸交于點M,與x軸交于點A和B.
(1)y=mx2+nx+p的解析式為______,試猜想出與一般形式拋物線y=ax2+bx+c關(guān)于y軸對稱的二次函數(shù)解析式為______.
(2)A,B的中點是點C,則sin∠CMB=______.
(3)如果過點M的一條直線與y=mx2+nx+p圖象相交于另一點N(a,b),a,b滿足a2-a+m=0,b2-b+m=0,則點N的坐標為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

現(xiàn)有一個長為2米的長方形鐵片,要把它制成一個開口的水槽.
(1)方案甲,如果做成一個底邊長為1米,兩邊高都為0.5米開口長方形水槽,求水槽的橫截面面積.
(2)方案乙,如圖把鐵片制成等腰梯形水槽,使∠ABC=∠BCD=120°.設BC=2xcm,梯形ABCD(水槽的橫截面)的面積為ycm2,試寫出y關(guān)于x的函數(shù)關(guān)系式以及自變量x的取值范圍,并求出y的最大值;
(3)你能找到一種使水槽的橫截面面積比方案乙中的y更大的設計方案嗎?若能,請畫出圖形,標出必要的數(shù)據(jù)(可不寫解答過程),寫出你所設計方案的橫截面面積;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,二次函數(shù)y=a(x+1)2-4的圖象與x軸分別交于A、B兩點,與y軸交于點D,點C是二次函數(shù)y=a(x+1)2-4的圖象的頂點,CD=
2

(1)求a的值.
(2)點M在二次函數(shù)y=a(x+1)2-4圖象的對稱軸上,且∠AMC=∠BDO,求點M的坐標.
(3)將二次函數(shù)y=a(x+1)2-4的圖象向下平移k(k>0)個單位,平移后的圖象與直線CD分別交于E、F兩點(點F在點E左側(cè)),設平移后的二次函數(shù)的圖象的頂點為C1,與y軸的交點為D1,是否存在實數(shù)k,使得CF⊥FC1?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案