【題目】在等腰Rt△ABC中,∠ACB=90°,AC=BC,點D是邊BC上任意一點,連接AD,過點C作CE⊥AD于點E.
(1)如圖1,若∠BAD=15°,且CE=1,求線段BD的長;
(2)如圖2,過點C作CF⊥CE,且CF=CE,連接BF,
求證:AE=BF.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△AOB是等邊三角形,點A的坐標是(0,4),點B在第一象限,點P是x軸上的一個動點,連接AP,并把△AOP繞著點A按逆時針方向旋轉(zhuǎn),使邊AO與AB重合,得到△ABD.
(1)求B的坐標;
(2)當點P運動到點(t,0)時,試用含t的式子表示點D的坐標;
(3)是否存在點P,使△OPD的面積等于 ,若存在,請求出符合條件的點P的坐標(直接寫出結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,半徑均為1個單位長度的半圓O1,O2,O3,…組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第2019秒時,點P的坐標是( )
A. (2019,0) B. (2019,-1) C. (2019,1) D. (2018,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網(wǎng)絡(luò)中,△ABC的三個頂點都在格點上,點A、B、C的坐標分別為(﹣2,4)、(﹣2,0)、(﹣4,1),將△ABC繞原點O旋轉(zhuǎn)180度得到△A1B1C1 . 結(jié)合所給的平面直角坐標系解答下列問題:
(1)畫出△A1B1C1;
(2)畫出一個△A2B2C2 , 使它分別與△ABC,△A1B1C1軸對軸(其中點A,B,C與點A2 , B2 , C2對應(yīng));
(3)在(2)的條件下,若過點B的直線平分四邊形ACC2A2的面積,請直接寫出該直線的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,連接在一起的兩個等邊三角形的邊長都為2cm,一個微型機器人由點A開始按A→B→C→D→E→C→A→B→C…的順序沿等邊三角形的邊循環(huán)移動.當微型機器人移動了2018cm后,它停在了點_____上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖BD為△ABC的角平分線,且BD=BC, E為BD延長線上一點,BE=BA,
過E作EF⊥AB于F,下列結(jié)論:
①△ABD≌△EBC ;②∠BCE+∠BDC=180°;
③AD=AE=EC;④AB//CE ;
⑤BA+BC=2BF.其中正確的是________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠A=65°,∠B=75°,將△ABC沿EF對折,使C點與C′點重合.當∠1=45°時,∠2=________°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點P為∠EAF平分線上一點,PB⊥AE于B,PC⊥AF于C,點M,N分別是射線AE,AF上的點,且PM=PN.
(1)如圖1,當點M在線段AB上,點N在線段AC的延長線上時,求證:BM=CN;
(2)在(1)的條件下,直接寫出線段AM,AN與AC之間的數(shù)量關(guān)系 ;
(3)如圖2,當點M在線段AB的延長線上,點N在線段AC上時,若AC:PC=2:1,且PC=4,求四邊形ANPM的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com