如圖所示,已知梯形ABCD中,AD∥BC,且AD<BC,N、M分別為AC、BD的中點(diǎn),
求證:(1)MN∥BC;(2)MN= (BC-AD).
證明:(1)取AB中點(diǎn)P,連MP,NP,
∵M(jìn)為BD的中點(diǎn),
∴PM∥AD,
同理NP∥BC,
∵AD∥BC,
∴N、M、P三點(diǎn)共線,
∴MN∥BC.
(2)法一:∵M(jìn)N∥BC,N、M分別為AC、BD的中點(diǎn),
∴P是AB的中點(diǎn),
∴PN=BC,PM=AD,
∴MN═(BC-AD).

法二:如圖所示,連接AM并延長(zhǎng),交BC于點(diǎn)G.
∵AD∥BC,
∴∠ADM=∠GBM,∠MAD=∠MGB,
又∵M(jìn)為BD中點(diǎn),
∴△AMD≌△GMB.
∴BG=AD,AM=MG.
在△AGC中,MN為中位線,
∴MN=GC=(BC-BG)=(BC-AD),
即MN=(BC-AD).
(1)取AB中點(diǎn)P,連MP,NP,證N、M、P三點(diǎn)共線即可;
(2)連接AM并延長(zhǎng),交BC于點(diǎn)G,證明△AMD≌△GMB,根據(jù)中位線定理即可證明。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,將正方形沿圖中虛線(其中x<y)剪成①②③④四塊圖形,用這四塊圖形恰能拼成一個(gè)矩形(非正方形)(1)畫(huà)出拼成的矩形的簡(jiǎn)圖;(2)求的值。                                                                     
                                  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在等腰梯形ABCD中,AD∥BC,∠B=60°,AD=AB.點(diǎn)E、F分別在AD、AB上,AE=BF,DF與CE相交于點(diǎn)P,則么∠DPE的度數(shù)為_(kāi)______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,直線L過(guò)正方形ABCD的頂點(diǎn)B,點(diǎn)A、C到直線L的距離分別是1和2,則正方形的邊長(zhǎng)是  。
  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,如圖,四邊形中,,,且,
試求:(1)的度數(shù);(2)四邊形的面積(結(jié)果保留根號(hào));

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在梯形ABCD中,AB∥CD,中位線EF與對(duì)角線AC、BD交于M、N兩點(diǎn),若EF=18cm,MN=8cm,則AB的長(zhǎng)等于( 。
                   
 
A.
10cm
B.
13cm
C.
20cm
D.
26cm
 
 
 
 
 
 
 
 
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖:正方形ABCD的邊長(zhǎng)為2,以對(duì)角線AC上任一這對(duì)角線作正方形,則所有小正方形的周長(zhǎng)之和為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在□ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線,過(guò)A點(diǎn)作AG∥BD交CB的延長(zhǎng)線于點(diǎn)G.

(1)求證:DE∥BF;
(2)若∠G=90°,求證:四邊形DEBF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,將一張矩形紙片沿EF折疊,使點(diǎn)落在 邊上的點(diǎn)B處;沿BG折疊,使點(diǎn)落在點(diǎn)D處,且BD過(guò)F點(diǎn).

⑴試判斷四邊形BEFG的形狀,并證明你的結(jié)論.
⑵當(dāng)∠BFE為多少度時(shí),四邊形BEFG是菱形.

查看答案和解析>>

同步練習(xí)冊(cè)答案