【題目】如圖,在ABCD中,點(diǎn)EBC邊上,點(diǎn)FDC的延長(zhǎng)線(xiàn)上,且∠DAE=∠F

(1) 求證:△ABE∽△ECF;

(2) AB=5,AD=8BE=2,求FC的長(zhǎng).

【答案】(1)詳見(jiàn)解析;(2)

【解析】

1)由平行四邊形的性質(zhì)可知ABCDADBC.所以∠B=∠ECF,∠DAE=∠AEB,又因?yàn)橛帧?/span>DAE=∠F,進(jìn)而可證明:△ABE∽△ECF;

2)由(1)可知:△ABE∽△ECF,所以,由平行四邊形的性質(zhì)可知BCAD8,所以ECBCBE826,代入計(jì)算即可.

1)證明:

∵四邊形ABCD是平行四邊形,

ABCDADBC

∴∠B=∠ECF,∠DAE=∠AEB

又∵∠DAE=∠F

∴∠AEB=∠F

∴△ABE∽△ECF;

2)∵△ABE∽△ECF

,

∵四邊形ABCD是平行四邊形,

BCAD8

ECBCBE826

FC.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)點(diǎn).

1)求證:;

2)若,求的長(zhǎng);

3)若,且時(shí),直接寫(xiě)出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們把有兩條邊和其中一邊的對(duì)角對(duì)應(yīng)相等的兩個(gè)三角形叫做同族三角形,如圖1,在△ABC△ABD中,AB=ABAC=AD,∠B=∠B,則△ABC△ABD同族三角形

1)如圖2,四邊形ABCD內(nèi)接于圓,點(diǎn)C是弧BD的中點(diǎn),求證:△ABC△ACD是同族三角形;

2)如圖3,ABC內(nèi)接于⊙O,⊙O的半徑為,AB=6,∠BAC=30°,求AC的長(zhǎng);

3)如圖3,在(2)的條件下,若點(diǎn)D在⊙O上,ADCABC是非全等的同族三角形,ADCD,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,于點(diǎn)是弧AC上的動(dòng)點(diǎn),連接分別交,于點(diǎn),

當(dāng)時(shí),相等嗎?為什么?

當(dāng)點(diǎn)在什么位置時(shí),?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)x軸交于點(diǎn)和點(diǎn),與軸交于點(diǎn).


1)求拋物線(xiàn)的解析式;
2)若點(diǎn)為第二象限拋物線(xiàn)上一動(dòng)點(diǎn),連接,求面積的最大值,并求此時(shí)點(diǎn)的坐標(biāo).
3)在拋物線(xiàn)上是否存在點(diǎn)使得為等腰三角形?若存在,請(qǐng)求出一共有幾個(gè)符合條件的點(diǎn)(簡(jiǎn)要說(shuō)明理由)并寫(xiě)出其中一個(gè)點(diǎn)的坐標(biāo);若不存在這樣的點(diǎn),請(qǐng)簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校九年級(jí)學(xué)生的理化實(shí)驗(yàn)操作情況,隨機(jī)抽查了40名同學(xué)實(shí)驗(yàn)操作的得分.根據(jù)獲取的樣本數(shù)據(jù),制作了如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:

Ⅰ)扇形 ①的圓心角的大小是   ;

Ⅱ)求這40個(gè)樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù);

Ⅲ)若該校九年級(jí)共有320名學(xué)生,估計(jì)該校理化實(shí)驗(yàn)操作得滿(mǎn)分(10分)有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于的方程:①和關(guān)于的一元二次方程:(、均為實(shí)數(shù)),方程①的解為非正數(shù).

(1)的取值范圍.

(2)如果方程②的解為負(fù)整數(shù),,為整數(shù),求整數(shù)的值.

(3)當(dāng)方程②有兩個(gè)實(shí)數(shù)根、,滿(mǎn)足,且為正整數(shù),試判斷是否成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2a1x+a2+20有兩個(gè)不相等的實(shí)數(shù)根.

1)求實(shí)數(shù)a的取值范圍,并求a的最大整數(shù);

2x1可能是方程的一個(gè)根嗎?若是,請(qǐng)求出它的另一個(gè)根,若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是一塊銳角三角形材料,高線(xiàn)AH長(zhǎng)8cm,底邊BC長(zhǎng)10cm,要把它加工成一個(gè)矩形零件,使矩形DEFG的一邊EFBC上,其余兩個(gè)頂點(diǎn)D、G分別在AB、AC上,AHDGM

1)求證:AMBC=AHDG;

2)加工成的矩形零件DEFG的面積能否等于25cm2?若能,求出寬DE的長(zhǎng)度;否則,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案