【題目】如圖,已知⊙O的直徑AB垂直于弦CD于點(diǎn)E,連接CO并延長(zhǎng)交AD于點(diǎn)F,且CF⊥AD
(1) 求證:E是OB的中點(diǎn)
(2) 若AB=8,求CD的長(zhǎng)
【答案】(1)見(jiàn)解析;(2)4.
【解析】試題分析:(1)要證明:E是OB的中點(diǎn),只要求證OE=OB=OC,即證明∠OCE=30°即可.
(2)在直角△OCE中,根據(jù)勾股定理就可以解得CE的長(zhǎng),進(jìn)而求出CD的長(zhǎng).
(1)證明:連接AC,如圖
∵直徑AB垂直于弦CD于點(diǎn)E,
∴,
∴AC=AD,
∵過(guò)圓心O的線CF⊥AD,
∴AF=DF,即CF是AD的中垂線,
∴AC=CD,
∴AC=AD=CD.
即:△ACD是等邊三角形,
∴∠FCD=30°,
在Rt△COE中,,
∴,
∴點(diǎn)E為OB的中點(diǎn);
(2)解:在Rt△OCE中,AB=8,
∴,
又∵BE=OE,
∴OE=2,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)多邊形的內(nèi)角和為1440°,則這個(gè)多邊形的邊數(shù)是( 。
A. 8B. 10C. 12D. 14
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線段AC、BD交于點(diǎn)M,過(guò)B、D兩點(diǎn)分別作AC的垂線段BF、DE,AB=CD.
(1)若∠A=∠C,求證FM=EM;
(2)若FM=EM,則∠A=∠C.是真命題嗎?(直接判斷,不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將拋物線y=x2﹣2x﹣3沿x軸折得到的新拋物線的解析式為( 。
A. y=﹣x2+2x+3B. y=﹣x2﹣2x﹣3C. y=x2+2x﹣3D. y=x2﹣2x+3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P在∠AOB的邊OB上.按下列要求畫圖,并回答問(wèn)題.
(1)過(guò)點(diǎn)O畫直線l⊥OB;
(2)過(guò)點(diǎn)P畫直線OA的垂線,垂足為點(diǎn)C;點(diǎn)P到直線OA的距離是線段的長(zhǎng),約等于mm(精確到1mm);
(3)過(guò)點(diǎn)P畫直線MN∥OA,若∠AOB=x°,則∠BPC=(用含x的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,∠C=90°,且AB=AD,連接BD,過(guò)點(diǎn)A作BD的垂線,交BC于E,若EC=3cm,CD=4cm,則梯形ABCD的面積是_________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四邊形是矩形,點(diǎn)、的坐標(biāo)分別為, .點(diǎn)是線段上的動(dòng)點(diǎn)(與端點(diǎn)、不重合).過(guò)點(diǎn)作直線交折線于點(diǎn).當(dāng)點(diǎn)在線段上時(shí),若矩形關(guān)于直線的對(duì)稱圖形為四邊形,試探究與矩形的重疊部分的面積是否發(fā)生變化?若不變,求出該重疊部分的面積;若改變,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com