【題目】如圖,四邊形ABCD中,點E、F、G分別為邊AB、BC、CD的中點,若△EFG的面積為4,則四邊形ABCD的面積為( 。
A. 8 B. 12 C. 16 D. 18
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△A'BC'是由Rt△ABC繞B點順時針旋轉(zhuǎn)而得,且點A,B,C'在同一條直線上,在Rt△ABC中,若∠C=90°,BC=2,AB=4,則Rt△ABC旋轉(zhuǎn)到Rt△A'BC'所掃過的面積為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣2(k﹣1)x+k2=0有兩個實數(shù)根x1,x2.
(1)求k的取值范圍;
(2)若|x1+x2|=x1x2﹣1,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一天晚上,小麗幫媽媽清洗茶杯,三個茶杯只有花色不同,其中一個無蓋(如圖),在清洗過程中,突然停電了,小麗只好摸黑清洗(在摸黑清洗中,能分清杯蓋與茶杯)
(1)小麗摸黑清洗過程中,在三個茶杯中他隨手拿起兩個,則這兩個都屬于有杯蓋的茶杯的概率是多少?
(2)小麗摸黑清洗完茶杯和杯蓋后,只好把杯蓋與茶杯隨機地搭配在一起,則花色搭配完全正確的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:如圖(1),在四邊形ABCD中,若AB=AD,BC=CD,則把這樣的四邊形稱之為箏形.
(1)寫出箏形的兩個性質(zhì)(定義除外).
① ;② .
(2)如圖(2),在平行四邊形ABCD中,點E、F分別在BC、CD上,且AE=AF,∠AEC=∠AFC.求證:四邊形AECF是箏形.
(3)如圖(3),在箏形ABCD中,AB=AD=26,BC=DC=25,AC=17,求箏形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,點P的坐標為(x1,y1),點Q的坐標為(x2,y2),且x1≠x2,y1≠y2.若P,Q為某個矩形的兩個頂點,且該矩形的邊均與某條坐標軸垂直,則稱該矩形為點P,Q的“相關(guān)矩形”,下圖①為點P,Q的“相關(guān)矩形”的示意圖.
已知點A的坐標為(1,0),
(1)若點B的坐標為(3,1),求點A,B的“相關(guān)矩形”的面積;
(2)點C在直線x=3上,若點A,C的“相關(guān)矩形”為正方形,求直線AC的表達式;
(3)若點D的坐標為(4,2),將直線y=2x+b平移,當它與點A,D的“相關(guān)矩形”沒有公共點時,求出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一名在校大學生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于16元/件,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(件)與銷售價x(元/件)之間的函數(shù)關(guān)系如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)求每天的銷售利潤W(元)與銷售價x(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用指定方法解下列一元二次方程.
(1)x2﹣36=0(直接開平方法)
(2)x2﹣4x=2(配方法)
(3)2x2﹣5x+1=0(公式法)
(4)(x+1)2+8(x+1)+16=0(因式分解法)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】麗水苛公司將“麗水山耕”農(nóng)副產(chǎn)品運往杭州市場進行銷售.記汽車行駛時間為t小時,平均速度為v千米/小時(汽車行駛速度不超過100千米/小時).根據(jù)經(jīng)驗,v,t的一組對應值如下表:
v(千米/小時) | 75 | 80 | 85 | 90 | 95 |
t(小時) | 4.00 | 3.75 | 3.53 | 3.33 | 3.16 |
(1)根據(jù)表中的數(shù)據(jù),求出平均速度v(千米/小時)關(guān)于行駛時間t(小時)的函數(shù)表達式;
(2)汽車上午7:30從麗水出發(fā),能否在上午10:00之前到達杭州市?請說明理由:
(3)若汽車到達杭州市場的行駛時間t滿足3.5≤t≤4,求平均速度v的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com