【題目】點(diǎn) O 是直線 AB上一點(diǎn),∠COD 是直角,OE平分∠BOC.
(1)①如圖1,若∠DOE=25°,求∠AOC 的度數(shù);
②如圖2,若∠DOE=α,直接寫出∠AOC的度數(shù)(用含α的式子表示);
(2)將圖 1中的∠COD 繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)至圖 2 所示位置.探究∠DOE 與∠AOC 的度數(shù)之間的關(guān)系,寫出你的結(jié)論,并說明理由.
【答案】(1)①∠AOC=50°;②∠AOC=2α;(2)∠DOE=∠AOC,理由詳見解析.
【解析】
(1)①首先求得∠COE的度數(shù),然后根據(jù)角平分線的定義求得∠COB的度數(shù),再根據(jù)∠AOC=180°﹣∠BOC即可求解;
②解法與①相同,把①中的25°改成α即可;
(2)把∠AOC的度數(shù)作為已知量,求得∠BOC的度數(shù),然后根據(jù)角的平分線的定義求得∠COE的度數(shù),再根據(jù)∠DOE=∠COD﹣∠COE求得∠DOE,即可解決.
(1)①∵∠COD=90°,∠DOE=25°,
∴∠COE=∠COD﹣∠DOE=90°﹣25°=65°,
又∵OE平分∠BOC,
∴∠BOC=2∠COE=130°,
∴∠AOC=180°﹣∠BOC=180°﹣130°=50°;
②∵∠COD=90°,∠DOE=α,
∴∠COE=∠COD﹣∠DOE=90°﹣α,
又∵OE平分∠BOC,
∴∠BOC=2∠COE=180°﹣2α,
∴∠AOC=180°﹣∠BOC=180°﹣(180°﹣2α)=2α;
(2)∠DOE=∠AOC,理由如下:
∵∠BOC=180°﹣∠AOC,
又∵OE平分∠BOC
∴∠COE=∠BOC=(180°﹣∠AOC)=90°﹣∠AOC,
又∵∠COD=90°,
∴∠DOE=90°﹣∠COE=90°﹣(90°﹣∠AOC)=∠AOC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),AD⊥CD,(點(diǎn)D在⊙O外)AC平分∠BAD.
(1)求證:CD是⊙O的切線;
(2)若DC、AB的延長線相交于點(diǎn)E,且DE=12,AD=9,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線a、b、c表示三條公路,現(xiàn)要建一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有_______處.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A、B、C、D、E在同一直線上,且AC=BD,E是線段BC的中點(diǎn).
(1)點(diǎn)E是線段AD的中點(diǎn)嗎?說明理由;
(2)當(dāng)AD=10,AB=3時(shí),求線段BE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E、F分別是BC、CD上的點(diǎn),且CE=CF,點(diǎn)P、Q分別是AF、EF的中點(diǎn),連接PD、PQ、DQ,則△PQD的形狀是( 。
A. 等腰三角形 B. 直角三角形
C. 等腰非直角三角形 D. 等腰直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廣告公司招標(biāo)了一批燈箱加工工程,需要在規(guī)定時(shí)間內(nèi)加工1400個(gè)燈箱,該公司按一定速度加工5天后,發(fā)現(xiàn)按此速度加工下去會延期10天完工,于是又抽調(diào)了一批工人投入燈箱加工,使工作效率提高了50%,結(jié)果如期完成工作.
(1)求該公司前5天每天加多少個(gè)燈箱;
(2)求規(guī)定時(shí)間是多少天.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論: ①4a﹣b<0;
②abc<0;
③a+b+c<0;
④a﹣b+c>0;
⑤4a+2b+c>0.
其中錯(cuò)誤的個(gè)數(shù)有( 。
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com