【題目】已知,如圖,A是⊙O上一點(diǎn),半徑OC的延長(zhǎng)線與過點(diǎn)A的直線交于B點(diǎn),OC=BC,AC= OB.
(1)求證:AB是⊙O的切線;
(2)若∠ACD=45°,OC=2,求弦AD的長(zhǎng).

【答案】
(1)證明:如圖連接OA.

∵AC= OB,OC=CB,

∴AC=OC=CB,

∴∠OAB=90°,

∴AB是⊙O的切線.


(2)解:連接OD.

∵∠DAO=2∠DCA,∠DCA=45°,

∴∠DOA=90°,∵OD=OA=OC=2,

∴AD= = =2


【解析】(1)根據(jù)如果一個(gè)三角形一邊上的中線等于這邊的一半,這個(gè)三角形是直角三角形,即可判斷∠OAB=90°,即可解決問題.(2)只要證明∠DOA=90°,利用勾股定理即可解決問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,AD⊥BCD,CE⊥ABE,ADCE交于點(diǎn)F,且AD=CD.

(1)求證:△ABD≌△CFD;

(2)已知BC=7,AD=5,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2﹣2x+3的圖象與x軸交A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).

(1)求點(diǎn)A、B、C的坐標(biāo);
(2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過P作PQ∥AB交拋物線于點(diǎn)Q,過Q作QN⊥x軸于N,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),求△AEM的面積;
(3)在(2)的條件下,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),連接DQ,過拋物線上一點(diǎn)F作y軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方),若FG=2 DQ,求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,點(diǎn)D在邊AB上,AC=BC=BD,AD=CDA的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市為了進(jìn)一步落實(shí)國(guó)務(wù)院“家電下鄉(xiāng)”政策,家電下鄉(xiāng)的產(chǎn)品為彩電、冰箱、洗衣機(jī)和手機(jī)四種產(chǎn)品,我市一家家電商場(chǎng),今年一季度對(duì)以上四種產(chǎn)品的銷售情況進(jìn)行了統(tǒng)計(jì),繪制了如下的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中信息解答下列問題:
(1)該商場(chǎng)一季度四種產(chǎn)品共銷售臺(tái);
(2)該商場(chǎng)一季度洗衣機(jī)銷售的數(shù)量占四種產(chǎn)品銷售總量的%;
(3)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某次考試中,某班級(jí)的數(shù)學(xué)成績(jī)統(tǒng)計(jì)圖如圖.下列說法錯(cuò)誤的是(  )

A. 得分在70~80分之間的人數(shù)最多 B. 該班的總?cè)藬?shù)為40

C. 得分在90~100分之間的人數(shù)最少 D. 及格(≥60分)人數(shù)是26

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在扇形AOB中,∠AOB=90°, = ,點(diǎn)D在OB上,點(diǎn)E在OB的延長(zhǎng)線上,當(dāng)正方形CDEF的邊長(zhǎng)為2 時(shí),則陰影部分的面積為(
A.2π﹣4
B.4π﹣8
C.2π﹣8
D.4π﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一個(gè)直角三角形ACB(ACB=90°)繞著頂點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,使得點(diǎn)C旋轉(zhuǎn)到AB邊上的一點(diǎn)D,點(diǎn)A旋轉(zhuǎn)到點(diǎn)E的位置.F,G分別是BD,BE上的點(diǎn),BF=BG,延長(zhǎng)CF與DG交于點(diǎn)H.

(1)求證:CF=DG;

(2)求出FHG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于實(shí)數(shù)a,我們規(guī)定:用符號(hào)[]表示不大于的最大整數(shù),稱[]a的根整數(shù),例如:[]=3[]=3

1)仿照以上方法計(jì)算:[] =   ;[] =   

2)若[]=1,寫出滿足題意的x的整數(shù)值   

如果我們對(duì)a連續(xù)求根整數(shù),直到結(jié)果為1為止.例如:對(duì)10連續(xù)求根整數(shù)2 []=3[]=1,這時(shí)候結(jié)果為1

3)對(duì)100連續(xù)求根整數(shù),   次之后結(jié)果為1

4)只需進(jìn)行3次連續(xù)求根整數(shù)運(yùn)算后結(jié)果為1的所有正整數(shù)中,最大的是   

查看答案和解析>>

同步練習(xí)冊(cè)答案