【題目】問(wèn)題情境:
在平面直角坐標(biāo)系xOy中有不重合的兩點(diǎn)A(x1,y1)和點(diǎn)B(x2,y2),小明在學(xué)習(xí)中發(fā)現(xiàn),若x1=x2,則AB∥y軸,且線段AB的長(zhǎng)度為|y1﹣y2|;若y1=y2,則AB∥x軸,且線段AB的長(zhǎng)度為|x1﹣x2|;
(應(yīng)用):
(1)若點(diǎn)A(﹣1,1)、B(2,1),則AB∥x軸,AB的長(zhǎng)度為 .
(2)若點(diǎn)C(1,0),且CD∥y軸,且CD=2,則點(diǎn)D的坐標(biāo)為 .
(拓展):
我們規(guī)定:平面直角坐標(biāo)系中任意不重合的兩點(diǎn)M(x1,y1),N(x2,y2)之間的折線距離為d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:圖1中,點(diǎn)M(﹣1,1)與點(diǎn)N(1,﹣2)之間的折線距離為d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.
解決下列問(wèn)題:
(1)已知E(2,0),若F(﹣1,﹣2),求d(E,F);
(2)如圖2,已知E(2,0),H(1,t),若d(E,H)=3,求t的值;
(3)如圖3,已知P(3,3),點(diǎn)Q在x軸上,且三角形OPQ的面積為3,求d(P,Q).
【答案】【應(yīng)用】:(1)3;(2)(1,2)或(1,﹣2);【拓展】:(1)5;(2)t=±2;(3)d(P,Q)的值為4或8.
【解析】
(1)根據(jù)若y1=y2,則AB∥x軸,且線段AB的長(zhǎng)度為|x1-x2|,代入數(shù)據(jù)即可得出結(jié)論;
(2)由CD∥y軸,可設(shè)點(diǎn)D的坐標(biāo)為(1,m),根據(jù)CD=2即可得出|0-m|=2,解之即可得出結(jié)論;
【拓展】:(1)根據(jù)兩點(diǎn)之間的折線距離公式,代入數(shù)據(jù)即可得出結(jié)論;
(2)根據(jù)兩點(diǎn)之間的折線距離公式結(jié)合d(E,H)=3,即可得出關(guān)于t的含絕對(duì)值符號(hào)的一元一次方程,解之即可得出結(jié)論;
(3)由點(diǎn)Q在x軸上,可設(shè)點(diǎn)Q的坐標(biāo)為(x,0),根據(jù)三角形的面積公式結(jié)合三角形OPQ的面積為3即可求出x的值,再利用兩點(diǎn)之間的折線距離公式即可得出結(jié)論.
解:【應(yīng)用】:
(1)AB的長(zhǎng)度為|﹣1﹣2|=3.
故答案為:3.
(2)由CD∥y軸,可設(shè)點(diǎn)D的坐標(biāo)為(1,m),
∵CD=2,
∴|0﹣m|=2,解得:m=±2,
∴點(diǎn)D的坐標(biāo)為(1,2)或(1,﹣2).
【拓展】
:
(1)d(E,F)=|2﹣(﹣1)|+|0﹣(﹣2)|=5.
故答案為:5.
(2)∵E(2,0),H(1,t),d(E,H)=3,
∴|2﹣1|+|0﹣t|=3,
解得:t=±2.
(3)由點(diǎn)Q在x軸上,可設(shè)點(diǎn)Q的坐標(biāo)為(x,0),
∵三角形OPQ的面積為3,
∴|x|×3=3,解得:x=±2.
當(dāng)點(diǎn)Q的坐標(biāo)為(2,0)時(shí),d(P,Q)=|3﹣2|+|3﹣0|=4;
當(dāng)點(diǎn)Q的坐標(biāo)為(﹣2,0)時(shí),d(P,Q)=|3﹣(﹣2)|+|3﹣0|=8
綜上所述,d(P,Q)的值為4或8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小剛和小強(qiáng)從兩地同時(shí)出發(fā),小剛騎自行車,小強(qiáng)步行,沿同一條路線相向勻速而行.出發(fā)后兩小時(shí)兩人相遇,相遇時(shí)小剛比小強(qiáng)多行進(jìn)24千米.相遇后0.5小時(shí)小剛到達(dá)地.
(1)兩人的行進(jìn)速度分別是多少?
(2)相遇后經(jīng)過(guò)多少時(shí)間小強(qiáng)到達(dá)地?
(3)兩地相距多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點(diǎn)落在邊AD上的E處,折痕為PQ,過(guò)點(diǎn)E作EF∥AB交PQ于F,連接BF.
(1)求證:四邊形BFEP為菱形;
(2)當(dāng)點(diǎn)E在AD邊上移動(dòng)時(shí),折痕的端點(diǎn)P、Q也隨之移動(dòng);
①當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí)(如圖2),求菱形BFEP的邊長(zhǎng);
②若限定P、Q分別在邊BA、BC上移動(dòng),求出點(diǎn)E在邊AD上移動(dòng)的最大距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圖形中每一小格正方形的邊長(zhǎng)為1,已知△ABC
(1)AC的長(zhǎng)等于 .(結(jié)果保留根號(hào))
(2)將△ABC向右平移2個(gè)單位得到△A′B′C′,則A點(diǎn)的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是 ;
(3)畫(huà)出將△ABC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°后得到△A1B1C1,并寫(xiě)出A點(diǎn)對(duì)應(yīng)點(diǎn)A1的坐標(biāo)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等腰三角形ABC中,AB=AC,點(diǎn)D、E分別在邊AB、AC上,且AD=AE,連接BE、CD,交于點(diǎn)F.
(1)判斷∠ABE與∠ACD的數(shù)量關(guān)系,并說(shuō)明理由;
(2)求證:過(guò)點(diǎn)A、F的直線垂直平分線段BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)如圖,已知△ABC為等邊三角形,點(diǎn)D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點(diǎn)F。
(1)求證:△ABE≌△CAD;(2)求∠BFD的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,折疊長(zhǎng)方形的一邊,使點(diǎn)落在邊的點(diǎn)處,已知,.
(1)求的長(zhǎng);
(2)求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)材料,解答問(wèn)題
如圖,數(shù)軸上有點(diǎn),對(duì)應(yīng)的數(shù)分別是6,-4,4,-1,則兩點(diǎn)間的距離為;兩點(diǎn)間的距離為;兩點(diǎn)間的距離為;由此,若數(shù)軸上任意兩點(diǎn)分別表示的數(shù)是,則兩點(diǎn)間的距離可表示為.反之,表示有理數(shù)在數(shù)軸上的對(duì)應(yīng)點(diǎn)之間的距離,稱之為絕對(duì)值的幾何意義.
問(wèn)題應(yīng)用1:
(1)如果表示-1的點(diǎn)和表示的點(diǎn)之間的距離是2,則點(diǎn)對(duì)應(yīng)的的值為___________;
(2)方程的解____________;
(3)方程的解______________ ;
問(wèn)題應(yīng)用2:
如圖,若數(shù)軸上表示的點(diǎn)為.
(4)的幾何意義是數(shù)軸上_____________,當(dāng)__________,的值最小是____________;
(5)的幾何意義是數(shù)軸上_______,的最小值是__________,此時(shí)點(diǎn)在數(shù)軸上應(yīng)位于__________上;
(6)根據(jù)以上推理方法可求的最小值是___________,此時(shí)__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E在邊AB上,AE=1,若點(diǎn)P為對(duì)角線BD上的一個(gè)動(dòng)點(diǎn),則△PAE周長(zhǎng)的最小值是( )
A.3B.4C.5D.6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com