【題目】如圖:長(zhǎng)方形ABCD中,AD=10,AB=4,點(diǎn)Q是BC的中點(diǎn),點(diǎn)P在AD邊上運(yùn)動(dòng),當(dāng)BPQ是等腰三角形時(shí),AP的長(zhǎng)為 .

【答案】2或2.5或3或8.

【解析】

試題AD=10,點(diǎn)Q是BC的中點(diǎn),BQ=BC=×10=5,

如圖1,PQ=BQ=5時(shí),過(guò)點(diǎn)P作PEBC于E,

根據(jù)勾股定理,QE=,

BE=BQ﹣QE=5﹣3=2,AP=BE=2;

如圖2,BP=BQ=5時(shí),過(guò)點(diǎn)P作PEBC于E,

根據(jù)勾股定理,BE=,AP=BE=3;

如圖3,PQ=BQ=5且PBQ為鈍角三角形時(shí),

BE=QE+BQ=3+5=8,AP=BE=8,

若BP=PQ,如圖4,過(guò)P作PEBQ于E,則BE=QE=2.5,AP=BE=2.5.

綜上所述,AP的長(zhǎng)為2或3或8或2.5

故答案為:2或3或8或2.5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)A是x軸正半軸上的動(dòng)點(diǎn),點(diǎn)B坐標(biāo)為(0,4),M是線段AB的中點(diǎn),將點(diǎn)M繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)90°得到點(diǎn)C,過(guò)點(diǎn)C作x軸的垂線,垂足為F,過(guò)點(diǎn)B作y軸的垂線與直線CF相交于點(diǎn)E,點(diǎn)D是點(diǎn)A關(guān)于直線CF的對(duì)稱點(diǎn),連結(jié)AC,BC,CD,設(shè)點(diǎn)A的橫坐標(biāo)為t.

(1)當(dāng)t=2時(shí),求CF的長(zhǎng);
(2)①當(dāng)t為何值時(shí),點(diǎn)C落在線段BD上;
②設(shè)△BCE的面積為S,求S與t之間的函數(shù)關(guān)系式;
(3)如圖2,當(dāng)點(diǎn)C與點(diǎn)E重合時(shí),將△CDF沿x軸左右平移得到△C′D′F′,再將A,B,C′,D′為頂點(diǎn)的四邊形沿C′F′剪開,得到兩個(gè)圖形,用這兩個(gè)圖形拼成不重疊且無(wú)縫隙的圖形恰好是三角形.請(qǐng)直接寫出所有符合上述條件的點(diǎn)C′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是矩形,AD∥x軸,A(﹣ ,3 ),AB=2,AD=3.
(1)直接寫出B、C、D三點(diǎn)的坐標(biāo);
(2)將矩形ABCD向右平移m個(gè)單位,使點(diǎn)A、C恰好同時(shí)落在反比例函數(shù)y= (x>0)的圖象上,得矩形A'B'C'D'.求矩形ABCD的平移距離m和反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P是拋物線:y=x2上的動(dòng)點(diǎn)(點(diǎn)在第一象限內(nèi)).連接 OP,過(guò)點(diǎn)0作OP的垂線交拋物線于另一點(diǎn)Q.連接PQ,交y軸于點(diǎn)M.作PA丄x軸于點(diǎn)A,QB丄x軸于點(diǎn)B.設(shè)點(diǎn)P的橫坐標(biāo)為m.

(1)如圖1,當(dāng)m= 時(shí),
①求線段OP的長(zhǎng)和tan∠POM的值;
②在y軸上找一點(diǎn)C,使△OCQ是以O(shè)Q為腰的等腰三角形,求點(diǎn)C的坐標(biāo);
(2)如圖2,連接AM、BM,分別與OP、OQ相交于點(diǎn)D、E.
①用含m的代數(shù)式表示點(diǎn)Q的坐標(biāo);
②求證:四邊形ODME是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.

1)作ABC關(guān)于點(diǎn)C成中心對(duì)稱的A1B1C1

2)將A1B1C1向右平移4個(gè)單位,作出平移后的A2B2C2

3)在x軸上求作一點(diǎn)P,使PA1+PC2的值最小,并寫出點(diǎn)P的坐標(biāo)(不寫解答過(guò)程,直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如圖1,等腰△ABC中,點(diǎn)E,F(xiàn)分別在腰AB,AC上,連結(jié)EF,若AE=CF,則稱EF為該等腰三角形的逆等線.

(1)如圖1,EF是等腰△ABC的逆等線,若EF⊥AB,AB=AC=5,AE =2,求逆等線EF的長(zhǎng);

(2)如圖2,若等腰直角△DEF的直角頂點(diǎn)D恰好為等腰直角△ABC底邊BC上的中點(diǎn),且點(diǎn)E,F(xiàn)分別在AB,AC上,求證:EF為等腰△ABC的逆等線;

(3)如圖3,邊長(zhǎng)為6的等邊三角形△AOC的邊OCX軸重合,EF是該等邊三角形的逆等線.F點(diǎn)的坐標(biāo)為(5,);試求點(diǎn)E的坐標(biāo)(若需要,本題可以直接應(yīng)用結(jié)論:在直角三角形中,30°角所對(duì)的直角邊等于斜邊的一半.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線BE、CF相交于點(diǎn)P.

(1)若∠ABC=70°,∠ACB=50°,則∠BPC=   °;

(2)求證:∠BPC=180°﹣(∠ABC+∠ACB);

(3)若∠A=α,求∠BPC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰梯形ABCD中,AB∥DC,線段AG,BG分別交CD于點(diǎn)E,F(xiàn),DE=CF. 求證:△GAB是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC為等邊三角形,過(guò)點(diǎn)B作BD⊥AC于點(diǎn)D,過(guò)D作DE∥BC,且DE=CD,連接CE,
(1)求證:△CDE為等邊三角形;
(2)請(qǐng)連接BE,若AB=4,求BE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案