【題目】如圖,已知數(shù)軸上點A表示的數(shù)為8,B是數(shù)軸上一點,且AB=14.
(1)寫出數(shù)軸上點B表示的數(shù);
(2)若點M、N分別是線段AO、BO的中點,求線段MN的長;
(3)若動點P從點A出發(fā).以每秒5個單位長度的速度沿數(shù)軸向左勻速運動,動點Q從點B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向左勻速運動,若點P、Q同時出發(fā).問點P運動多少秒時追上點Q?
【答案】(1)-6;(2);(3)7秒.
【解析】
(1)設(shè)B點表示的數(shù)為x,根據(jù)數(shù)軸上兩點間的距離公式建立方程求出其解,就可以求出點B表示的數(shù);
(2)利用中點的定義和線段的和差易求出MN;
(3)可設(shè)點P運動t秒時追上點Q,根據(jù)等量關(guān)系:速度差×時間=路程差,列出方程求解即可.
(1)設(shè)B點表示的數(shù)為x,由題意,得
8-x=14,
x=-6.
故B點表示的數(shù)為-6.
(2)∵點M、N分別是線段AO、BO的中點,
∴MN=OM+ON=OA+OB=(OA+OB)=AB=7.
(3)設(shè)點P運動t秒時追上點Q,依題意有
(5-3)t=14,
解得t=7.
故點P運動7秒時追上點Q.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,點D是邊BC上一動點(不與B、C重合),∠ADE=∠B=α,DE交AC于點E,且cosα= ,則線段CE的最大值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若直線l1經(jīng)過點(0,4),l2經(jīng)過點(3,2),且l1與l2關(guān)于x軸對稱,則l1與l2的交點坐標為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標平面內(nèi)有兩點、,且、兩點之間的距離等于(為大于0的已知數(shù)),在不計算的數(shù)值條件下,完成下列兩題:
(1)以學過的知識用一句話說出的理由;
(2)在軸上是否存在點,使是等腰三角形,如果存在,請寫出點的坐標,并求的面積;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=3∠B,AB=10,AC=4,AD平分∠BAC,交BC于點D,CE⊥AD于E,則CE= ______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于平面直角坐標系xOy中的點P(a,b),若點P′的坐標為(a+kb,ka+b)(其中k為常數(shù),且k≠0),則稱點P′為點P的“k屬派生點”.
例如:P(1,4)的“2屬派生點”為P′(1+2×4,2×1+4),即P′(9,6).
(1)點P(-1,6)的“2屬派生點”P′的坐標為_____________;
(2)若點P的“3屬派生點”P′的坐標為(6,2),則點P的坐標___________;
(3)若點P在x軸的正半軸上,點P的“k屬派生點”為P′點,且線段PP′的長度為線段OP長度的2倍,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖①、②分別是某種型號跑步機的實物圖與示意圖,已知踏板CD長為1.6m,CD與地面DE的夾角∠CDE為12°,支架AC長為0.8m,∠ACD為80°,求跑步機手柄的一端A的高度h(精確到0.1m). (參考數(shù)據(jù):sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形ABCD的頂點A、D在坐標軸上,其坐標分別為(2,0),(0,4),對角線AC⊥x軸.
(1)求直線DC對應(yīng)的函數(shù)解析式
(2)若反比例函數(shù)y= (k>0)的圖象經(jīng)過DC的中點M,請判斷這個反比例函數(shù)的圖象是否經(jīng)過點B,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com