【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A與原點(diǎn)O重合,頂點(diǎn)B在直線l上,將正方形沿射線OB方向無滑動地翻滾.若直線,正方形邊長為2
(1)翻滾后點(diǎn)A第一次落在直線l上的坐標(biāo)是_____;
(2)當(dāng)正方形翻滾2002次點(diǎn)A對應(yīng)點(diǎn)的坐標(biāo)是_____.
【答案】
【解析】
(1)觀察圖形即可得到翻滾后點(diǎn)A第一次落在直線l上,經(jīng)過四次翻滾后點(diǎn)A對應(yīng)一個循環(huán),解直角三角形即可求出點(diǎn)A第一次落在直線l上的坐標(biāo).
(2)因?yàn)辄c(diǎn)A四次翻滾為一個循環(huán),所以求出2002除以4的余數(shù)和商即可求解.
解:(1)點(diǎn)B在直線上,
∴直線l與x軸夾角為30°,
觀察圖形,即可得到翻滾后點(diǎn)A第一次落在直線l上,
∴此時OA1=4×2=8,
∴此時A1的坐標(biāo)是(×8,×),
即(12,4);
(2)觀察圖形可得經(jīng)過4次翻滾后點(diǎn)A對應(yīng)點(diǎn)一循環(huán),
2002÷4=500…2,
∴經(jīng)過500次翻滾后點(diǎn)A對應(yīng)點(diǎn)A2000的坐標(biāo)為(500×12,500×4),
即(6000,2000),
∴正方形翻滾2002次點(diǎn)A對應(yīng)點(diǎn)的坐標(biāo)是(6000+3×,2000+3+3),
即(6009﹣,)
故答案為:(6009﹣,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著“三農(nóng)”問題的解決,某農(nóng)民近兩年的年收入發(fā)生了明顯變化,已知前年和去年的收入分別是60000元和80000元,下面是依據(jù)①②③三種農(nóng)作物每種作物每年的收入占該年年收入的比例繪制的扇形統(tǒng)計圖.依據(jù)統(tǒng)計圖得出的以下四個結(jié)論正確的是( 。
A. ①的收入去年和前年相同
B. ③的收入所占比例前年的比去年的大
C. 去年②的收入為2.8萬
D. 前年年收入不止①②③三種農(nóng)作物的收入
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),點(diǎn)P到點(diǎn)A,B和D的距離分別為1,2,.△ADP沿點(diǎn)A旋轉(zhuǎn)至△ABP′,連接PP′,并延長AP與BC相交于點(diǎn)Q.
(1)求證:△APP′是等腰直角三角形;
(2)求∠BPQ的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以△ABC的邊AB、AC為一邊,向外作正方形ABEF和正方形AGHC像這樣的兩個正方形稱為△ABC的“依伴正方形”
(1)如圖1,連接BG,CF相交于點(diǎn)P,求證:BG=CF且BG⊥CF;
(2)如圖2,點(diǎn)D是BC的中點(diǎn),兩個依伴正方形的中心分別為O1,O2連結(jié)O1D,O2D,O1O2:,判斷△DO1O2的形狀并說明由;
(3)如圖2,若AB=6,AC=,∠BAC=60°,求O1O2的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)C是線段AB上一點(diǎn),AC=AB,BC為⊙O的直徑.
(1)在圖1直徑BC上方的圓弧上找一點(diǎn)P,使得PA=PB;(用尺規(guī)作圖,保留作圖痕跡,不要求寫作法)
(2)連接PA,求證:PA是⊙O的切線;
(3)在(1)的條件下,連接PC、PB,∠PAB的平分線分別交PC、PB于點(diǎn)D、E.求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD內(nèi)接于⊙O,AC為對角線,∠ACB=∠ACD
(1)如圖1,求證:AB=AD;
(2)如圖2,點(diǎn)E在AB弧上,DE交AC于點(diǎn)F,連接BE,BE=DF,求證:DF=DC;
(3)如圖3,在(2)的條件下,點(diǎn)G在BC弧上,連接DG,交CE于點(diǎn)H,連接GE,GF,若DE=BC,EG=GH=5,S△DFG=9,求BC邊的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以線段AC為對角線的四邊形ABCD(它的四個頂點(diǎn)A,B,C,D按順時針方向排列),已知AB=BC=CD,∠ABC=100°,∠CAD=40°,則∠BCD的度數(shù)為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com