已知反比例函數(shù)的圖象與一次函數(shù)的圖象交于點(diǎn)A(1,4)和點(diǎn)B
,).

(1)求這兩個(gè)函數(shù)的表達(dá)式;
(2)觀察圖象,當(dāng)>0時(shí),直接寫出>時(shí)自變量的取值范圍;
(3)如果點(diǎn)C與點(diǎn)A關(guān)于軸對(duì)稱,求△ABC的面積.

解:(1)∵點(diǎn)A(1,4)在的圖象上,∴=1×4=4。
∴反比例函數(shù)的表達(dá)式為 
∵點(diǎn)B在的圖象上,∴ !帱c(diǎn)B(-2,-2)。
又∵點(diǎn)A、B在一次函數(shù)的圖象上,
,解得 。
∴一次函數(shù)的表達(dá)式為。 
(2)由圖象可知,當(dāng) 0<<1時(shí),成立
(3)∵點(diǎn)C與點(diǎn)A關(guān)于軸對(duì)稱,∴C(1,-4)。
過點(diǎn)B作BD⊥AC,垂足為D,則D(1,-5)。   

∴△ABC的高BD=1=3,底為AC=4=8。
∴SABC=AC·BD=×8×3=12。 

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線和x軸、y軸的交點(diǎn)分別為B、C,點(diǎn)A的坐標(biāo)是(,0),另一條直線經(jīng)過點(diǎn)A、C.

(1)求直線AC所對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)動(dòng)點(diǎn)M從B出發(fā)沿BC運(yùn)動(dòng),運(yùn)動(dòng)的速度為每秒1個(gè)單位長(zhǎng)度.當(dāng)點(diǎn)M運(yùn)動(dòng)到C點(diǎn)時(shí)停止運(yùn)動(dòng).設(shè)M運(yùn)動(dòng)t秒時(shí),△ABM的面積為S.
① 求S與t的函數(shù)關(guān)系式;
② 當(dāng)t為何值時(shí),(注:表示△ABC的面積),求出對(duì)應(yīng)的t值;
③當(dāng) t=4的時(shí)候,在坐標(biāo)軸上是否存在點(diǎn)P,使得△BMP是以BM為直角邊的直角三角形?若存在,請(qǐng)直接寫出P點(diǎn)坐標(biāo),若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在等腰直角三角板ABC中,斜邊BC為2個(gè)單位長(zhǎng)度,現(xiàn)把這塊三角板在平面直角坐標(biāo)系xOy中滑動(dòng),并使B、C兩點(diǎn)始終分別位于y軸、x軸的正半軸上,直角頂點(diǎn)A與原點(diǎn)O位于BC兩側(cè).

(1)取BC中點(diǎn)D,問OD+DA的長(zhǎng)度是否發(fā)生改變,若會(huì),說明理由;若不會(huì),求出OD+DA長(zhǎng)度;
(2)你認(rèn)為OA的長(zhǎng)度是否會(huì)發(fā)生變化?若變化,那么OA最長(zhǎng)是多少?OA最長(zhǎng)時(shí)四邊形OBAC是怎樣的四邊形?并說明理由;
(3)填空:當(dāng)OA最長(zhǎng)時(shí)A的坐標(biāo)是(    ,    ),直線OA的解析式是              

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某校實(shí)行學(xué)案式教學(xué),需印制若干份數(shù)學(xué)學(xué)案。印刷廠有甲、乙兩種收費(fèi)方式,除按印數(shù)收取印刷費(fèi)外,甲種方式還需收取制版費(fèi)而乙種不需要。兩種印刷方式的費(fèi)用y(元)與印刷份數(shù)x(份)之間的函數(shù)關(guān)系如圖所示:

(1)填空:甲種收費(fèi)方式的函數(shù)關(guān)系式是   .
乙種收費(fèi)方式的函數(shù)關(guān)系式是   .
(2)該校某年級(jí)每次需印制100~450(含100和450)份學(xué)案,選擇哪種印刷方式較合算。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為A(0,2),B(2,0)直線AB與反比例函數(shù) 的圖象交與點(diǎn)C和點(diǎn)D(-1,a).

(1)求直線AB和反比例函數(shù)的解析式;
(2)求∠ACO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某生物小組觀察一植物生長(zhǎng),得到植物高度y(單位:厘米)與觀察時(shí)間x(單位:天)的關(guān)系,并畫出如圖所示的圖象(AC是線段,直線CD平行x軸).

(1)該植物從觀察時(shí)起,多少天以后停止長(zhǎng)高?
(2)求直線AC的解析式,并求該植物最高長(zhǎng)多少厘米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=ax+b的圖象與反比例函數(shù)的圖象相交于點(diǎn)A(m,1)、B(﹣1,n),與x軸相交于點(diǎn)C(2,0),且AC=OC.

(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)直接寫出不等式ax+b≥的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(2013年四川攀枝花6分)如圖,直線y=k1x+b(k1≠0)與雙曲線(k2≠0)相交于A(1,2)、B(m,﹣1)兩點(diǎn).

(1)求直線和雙曲線的解析式;
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)為雙曲線上的三點(diǎn),且x1<0<x2<x3,請(qǐng)直接寫出y1,y2,y3的大小關(guān)系式;
(3)觀察圖象,請(qǐng)直接寫出不等式k1x+b<的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

水果店王阿姨到水果批發(fā)市場(chǎng)打算購(gòu)進(jìn)一種水果銷售,經(jīng)過還價(jià),實(shí)際價(jià)格每千克比原來少2元,發(fā)現(xiàn)原來買這種80千克的錢,現(xiàn)在可買88千克。
(1)現(xiàn)在實(shí)際這種每千克多少元?
(2)準(zhǔn)備這種,若這種的量y(千克)與單價(jià)x(元/千克)滿足如圖所示的一次函數(shù)關(guān)系。

①求y與x之間的函數(shù)關(guān)系式;
②請(qǐng)你幫拿個(gè)主意,將這種的單價(jià)定為多少時(shí),能獲得最大利潤(rùn)?最大利潤(rùn)是多少?(利潤(rùn)=收入-進(jìn)貨金額)

查看答案和解析>>

同步練習(xí)冊(cè)答案