【題目】如圖是一個橫斷面為拋物線形狀的拱橋,當水面寬4m時,拱頂(拱橋洞的最高點)離水面2m,當水面下降1m時,水面的寬度為

A.3 B.2 C.3 D.2

【答案】B.

【解析】

試題建立平面直角坐標系,設橫軸x通過AB,縱軸y通過AB中點O且通過C點,則通過畫圖可得知O為原點,

拋物線以y軸為對稱軸,且經(jīng)過A,B兩點,OA和OB可求出為AB的一半2米,拋物線頂點C坐標為(0,2),

設頂點式y(tǒng)=ax2+2,代入A點坐標(-2,0),

得出:a=-0.5,

所以拋物線解析式為y=-0.5x2+2,

當水面下降1米,通過拋物線在圖上的觀察可轉(zhuǎn)化為:

當y=-1時,對應的拋物線上兩點之間的距離,也就是直線y=-1與拋物線相交的兩點之間的距離,

可以通過把y=-1代入拋物線解析式得出:

-1=-0.5x2+2,

解得:x=±,

所以水面寬度增加到2米,

故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)與反比例函數(shù)交于點,

(1)分別求出反比例函數(shù)和一次函數(shù)的表達式;

(2)根據(jù)函數(shù)圖象,直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點FFG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結(jié)論:①AC=FG;②SFAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQAC,其中正確的結(jié)論的個數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為x=1,給出下列結(jié)論:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正確的結(jié)論有(  。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+bx+c經(jīng)過A(-1,0)、B(3,0)、C(0,3)三點,直線l是拋物線的對稱軸.

(1)求拋物線的函數(shù)關系式;

(2)設點P是直線l上的一個動點,當PAC的周長最小時,求點P的坐標;

(3)在直線l上是否存在點M,使MAC為等腰三角形?若存在,直接寫出所有符合條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某園林專業(yè)戶計劃投資種植花卉及樹木,根據(jù)市場調(diào)查與預測,種植樹木的利潤y與投資量x成正比例關系,如圖1所示:種植花卉的利潤y與投資量x成二次函數(shù)關系,如圖2所示(注:利潤與投資量的單位:萬元)

(1)分別求出利潤y1與y2關于投資量x的函數(shù)關系式;

(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,他至少獲得多少利潤?他能獲取的最大利潤是多少?

(3)在(2)的基礎上要保證獲利在22萬元以上,該園林專業(yè)戶應怎樣投資?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,弦AC=2,ABC=30°,ACB的平分線交⊙O于點D,求:

(1)BC、AD的長;

(2)圖中兩陰影部分面積的和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=-x+b與雙曲線y=(x>0)交于A、B兩點,與x軸、y軸分別交干E、F兩點,AC⊥x軸于點C,BD⊥y軸于點D,當b= _____時,ACE、BDFABO面積的和等于EFO面積的.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將正方形OABC繞點O逆時針旋轉(zhuǎn)45°后得到正方形OA1B1C1依此方式,繞點O連續(xù)旋轉(zhuǎn)2018次得到正方形OA2018B2018C2018 , 如果點A的坐標為(,0),那么點B2018的坐標為( )

A. (1,1) B. (0,) C. (﹣1,1) D. (-,0)

查看答案和解析>>

同步練習冊答案