【題目】如圖,拋物線x軸交于AB兩點(diǎn),與y軸交于點(diǎn)C,已知A–1,0),且直線BC的解析式為y=x-2,作垂直于x軸的直線,與拋物線交于點(diǎn)F,與線段BC交于點(diǎn)E(不與點(diǎn)B和點(diǎn)C重合).

1)求拋物線的解析式;

2)若CEF是以CE為腰的等腰三角形,求m的值;

3)點(diǎn)Py軸左側(cè)拋物線上的一點(diǎn),過(guò)點(diǎn)P交直線BC于點(diǎn)M,連接PB,若以P、M、B為頂點(diǎn)的三角形與△ABC相似,求P點(diǎn)的坐標(biāo).

【答案】1;(2;(3)符合條件的點(diǎn)PP1-1,0)或

【解析】

1)將y=0代入y=x-2中,即可求出點(diǎn)B的坐標(biāo),然后利用待定系數(shù)法即可求出拋物線的解析式;

2)先分別用m表示出點(diǎn)E和點(diǎn)F的坐標(biāo),然后根據(jù)勾股定理分別求出CE2、CF2EF2,然后根據(jù)等腰三角形腰的情況分類討論,分別求出對(duì)應(yīng)的m值即可;

3)根據(jù)勾股定理的逆定理證出△ABC為直角三角形,∠ACB=90°,然后根據(jù)相似三角形的對(duì)應(yīng)情況分類討論,利用相似三角形的判定及性質(zhì)和銳角三角函數(shù)即可求出結(jié)論.

解:(1 由題意得:

y=0代入y=x-2中,得x=4

∴點(diǎn)B的坐標(biāo)為(4,0

A-1,0),B4,0)代入

解得,

2

i 若以C為等腰三角形的頂點(diǎn),則CE2=CF2

解得:m1=2,m2=4(不符合前提條件,故舍去);

ii 若以E為等腰三角形的頂點(diǎn),則EC2=EF2

解得:(不符合前提條件,故舍去);

綜上:m=2

3 ①根據(jù)勾股定理可得:AC==BC==,AB=5

AC2+BC2=25=AB2

∴△ABC為直角三角形,∠ACB=90°

∴當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),點(diǎn)M與點(diǎn)C重合,此時(shí)P1-1,0),

②如圖,當(dāng)△BPM∽△ABC時(shí),

∠BPM=∠ABC

過(guò)點(diǎn)MHRx軸,作PHHR于點(diǎn)HBRHR與點(diǎn)R,

∴∠PHM=MRB=PMB=90°

∴∠HPM+∠PMH=90°,∠RMB+∠PMH=90°

∴∠HPM=RMB

∴△PHM∽△MRB

AB//HR

BR=a,MR=2a

PH=4a,HM=2aPQ=3a,

點(diǎn)P在拋物線上,將代入

整理,得

解得:(舍),

∴符合條件的點(diǎn)PP1-10)或

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人在一條長(zhǎng)為600m的筆直道路上均勻地跑步,速度分別為,起跑前乙在起點(diǎn),甲在乙前面50m處,若兩人同時(shí)起跑,則從起跑出發(fā)到其中一人先到達(dá)終點(diǎn)的過(guò)程中,兩人之間的距離y(m)與時(shí)間t(s)的函數(shù)圖象是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:已知銳角∠AOC,依次按照以下順序操作畫(huà)圖:

1)在射線OA上取一點(diǎn)B,以點(diǎn)O為圓心,OB長(zhǎng)為半徑作,交射線OC于點(diǎn)D,連接BD;

2)分別以點(diǎn)B,D為圓心,BD長(zhǎng)為半徑作弧,交于點(diǎn)M,N;

3)連接ON,MN

根據(jù)以上作圖過(guò)程及所作圖形可知下列結(jié)論:①OC平分∠AON;②MNBD;③MN3BD;④若∠AOC30°,則MNON.其中正確結(jié)論的序號(hào)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某海域,一艘海監(jiān)船在P處檢測(cè)到南偏西45°方向的B處有一艘不明船只,正沿正西方向航行,海監(jiān)船立即沿南偏西60°方向以40海里/小時(shí)的速度去截獲不明船只,經(jīng)過(guò)1.5小時(shí),剛好在A處截獲不明船只,求不明船只的航行速度.(≈1.41,≈1.73,結(jié)果保留一位小數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊的邊軸交于點(diǎn),點(diǎn)是反比例函數(shù)圖像上的一點(diǎn),且,則等邊的邊長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,FO上的一點(diǎn),過(guò)點(diǎn)FO的切線與直徑AC的延長(zhǎng)線交于點(diǎn)D,過(guò)圓上的另一點(diǎn)BAO的垂線,交DF的延長(zhǎng)線于點(diǎn)M,交O于點(diǎn)E,垂足為H,連接AF,交BM于點(diǎn)G

1)求證:△MFG為等腰三角形.

2)若ABMD,求MF、FGEG之間的數(shù)量關(guān)系,并說(shuō)明理由.

3)在(2)的條件下,若DF6,tanM,求AG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,CDAB,交⊙OC、D兩點(diǎn),交AB點(diǎn)EF是弧BD上一點(diǎn),過(guò)點(diǎn)F作一條直線,交CD的延長(zhǎng)線于點(diǎn)G,交AB的延長(zhǎng)線于點(diǎn)M.連結(jié)AF,交CD于點(diǎn)H,GFGH

1)求證:MG是⊙O的切線;

2)若弧AF=弧CF,求證:HCAC;

3)在(2)的條件下,若tanG,AE6,求GM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點(diǎn)E,交BC于點(diǎn)D,過(guò)點(diǎn)E做直線l∥BC.

(1)判斷直線l與⊙O的位置關(guān)系,并說(shuō)明理由;

(2)若∠ABC的平分線BF交AD于點(diǎn)F,求證:BE=EF;

(3)在(2)的條件下,若DE=4,DF=3,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A60°,AB2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案