【題目】如圖,在5×5的正方形網(wǎng)格,每個小正方形的邊長都為1,線段AB的端點落在格點上,要求畫一個四邊形,所作的四邊形為中心對稱圖形,同時滿足下列要求:

1)在圖1中畫出以AB為一邊的四邊形;

2)分別在圖2和圖3中各畫出一個以AB為一條對角線的四邊形.

【答案】1)見解析;(2)見解析

【解析】

1)根據(jù)平行四邊形是中心對稱圖形,利用網(wǎng)格結(jié)構(gòu)作一個以線段AB為邊的平行四邊形即可;

2)在圖2中,利用網(wǎng)格結(jié)構(gòu)作一個以AB為對角線的平行四邊形即可;在圖3中,利用網(wǎng)格結(jié)構(gòu)作一個以AB為對角線的正方形.

解:(1)如圖1所示,平行四邊形ABCD即為所求作的四邊形;

2)如圖2所示,平行四邊形ACBD即為所求作的四邊形;

如圖3所示,正方形ACBD即為所求作的四邊形;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形的內(nèi)接四邊形,四邊形兩組對邊的延長線分別相交于點,且,連接

1)求的度數(shù);

2)當(dāng)的半徑等于2時,請直接寫出的長.(結(jié)果保留)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,與三角形各邊都相切的圓叫做三角形的內(nèi)切圓,則三角形可以稱為圓的外切三角形.如圖1的三邊分別相切于點叫做的外切三角形.以此類推,各邊都和圓相切的四邊形稱為圓外切四邊形.如圖2,與四邊形ABCD的邊分別相切于點則四邊形叫做的外切四邊形.

1)如圖2,試探究圓外切四邊形的兩組對邊之間的數(shù)量關(guān)系,猜想: (橫線上填“>”,“<”“=”)

2)利用圖2證明你的猜想(寫出已知,求證,證明過程);

3)用文字?jǐn)⑹錾厦孀C明的結(jié)論: ;

4)若圓外切四邊形的周長為相鄰的三條邊的比為,求此四邊形各邊的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AD//BC,∠A90°,CDCB,過點C作∠DCB的平分線CEAB于點E,連接DE,過點DDF//AB,且交CEF點,連接BF

1)求證:四邊形DEBF是菱形;

2)若AB5,BC13,求tanAED的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點A的坐標(biāo)為(21),點B的坐標(biāo)為(2,9),點C到直線AB的距離為4,且△ABC是直角三角形,則滿足條件的點C_____個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:點A、B在數(shù)軸上分別表示有理數(shù)ab,A、B兩點之間的距離表示為AB,在數(shù)軸上AB兩點之間的距離AB|ab|.回答下列問題:

1)數(shù)軸上表示﹣31兩點之間的距離是   ,數(shù)軸上表示﹣23的兩點之間的距離是   

2)數(shù)軸上表示x和﹣1的兩點之間的距離表示為   ;

3)若x表示一個有理數(shù),則|x2|+|x+3|有最小值嗎?若有,請求出最小值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在長方形ABCD中,AB=3,BC=4,動點P從點A開始按A→B→C→D的方向運動到點D.如圖,設(shè)動點P所經(jīng)過的路程為x,APD的面積為y.(當(dāng)點P與點AD重合時,y=0)

(1)寫出yx之間的函數(shù)解析式;

(2)畫出此函數(shù)的圖象

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E,FBC上兩點,且BE=CF,AF=DE

求證:(1△ABF≌△DCE;

  1. 四邊形ABCD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)Ly軸交于點C(0,3),且過點(10),(30)

(1)求二次函數(shù)L的解析式及頂點H的坐標(biāo)

(2)已知x軸上的某點M(t,0);若拋物線L關(guān)于點M對稱的新拋物線為L,且點CH的對應(yīng)點分別為C,H;試說明四邊形CHCH為平行四邊形.

(3)若平行四邊形的邊與某一條對角線互相垂直時,稱這種平行四邊形為和諧四邊形;在(2)的條件下,當(dāng)平行四邊形CHCH和諧四邊形時,求t的值.

查看答案和解析>>

同步練習(xí)冊答案