【題目】如圖,在△ABC中,AD是∠BAC的平分線,AD的垂直平分線交BC的延長線于點F

(1)求證:∠FAD=FDA

(2)若∠B=50°,求∠CAF的度數(shù).

【答案】1)見解析;(2)∠CAF50°.

【解析】

1)根據(jù)EF垂直平分AD,則可得AF=DF,根據(jù)等腰三角形的性質可得結論;

2)由AD∠BAC的平分線,可得∠BAD=∠DAC.根據(jù)∠FDA=∠BAD+∠B,∠FAD=∠DAC+∠CAF,可證∠B=∠CAF,從而可求出結論.

(1)證明:∵EFAD的垂直平分線,

AFDF.

∴∠FAD=∠FDA.

(2)AD平分∠BAC

∴∠BAD=∠DAC.

∵∠FDA=∠BAD+∠B,∠FAD=∠DAC+∠CAF

(1)知∠FAD=∠FDA,

∴∠B=∠CAF.

∵∠B50°,

∴∠CAF50°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知∠AOB=30°,其平分線是OD,自O點引射線OC,若∠AOC:COB=2:3,則∠COD=__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】423日是世界讀書日,學校開展讓書香溢滿校園讀書活動,以提升青少年的閱讀興趣,九年級(1)班數(shù)學活動小組對本年級600名學生每天閱讀時間進行了統(tǒng)計,根據(jù)所得數(shù)據(jù)繪制了兩幅不完整統(tǒng)計圖(每組包括最小值不包括最大值).九年級(1)班每天閱讀時間在0.5小時以內的學生占全班人數(shù)的8%.根據(jù)統(tǒng)計圖解答下列問題:

1)九年級(1)班有    名學生;

2)補全直方圖;

3)除九年級(1)班外,九年級其他班級每天閱讀時間在11.5小時的學生有165人,請你補全扇形統(tǒng)計圖;

4)求該年級每天閱讀時間不少于1小時的學生有多少人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠1=30°,∠B=60°,ABAC.

(1)∠DAB+∠B等于多少度?(2)ADBC平行嗎?ABCD平行嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中有三點,請回答如下問題:

1)在坐標系內描出點的位置:

2)求出以三點為頂點的三角形的面積;

3)在軸上是否存在點,使以三點為頂點的三角形的面積為10,若存在,請直接寫出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】7張如圖1的長為a,寬為bab)的小長方形紙片,按圖2的方式不重疊地放在矩形ABCD內,未被覆蓋的部分(兩個矩形)用陰影表示.設左上角與右下角的陰影部分的面積的差為S,當BC的長度變化時,按照同樣的放置方式,S始終保持不變,則a,b滿足( )

A.a=bB.a=3bC.a=bD.a=4b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 1,直線 MN 與直線 AB,CD 分別交于點 E,F,∠1 與∠2 互補.

(1)試判斷直線 AB 與直線 CD 的位置關系,并說明理由;

(2)如圖 2,∠BEF 與∠EFD 的角平分線交于點 P,EP CD 交于點 G,點 H MN 上一點,且GHEG,求證:PFGH;

(3)如圖 3,在(2)的條件下,連結 PH,在 GH 上取一點 K,使得∠PKG=2HPK,過點 P PQ 平分∠EPK EF 于點 Q,問∠HPQ 的大小是否發(fā)生變化?若不變,請求出其值;若變化,說明理由.(溫馨提示:三角形的三個內角和為 180°)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=6,DAB=60°,AE分別交BC、BD于點EF,CE=2,連接CF,以下結論:①△ABF≌△CBF;②點EAB的距離是2;tanDCF= ④△ABF的面積為.其中一定成立的有幾個( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,BC=AC=5,AB=8,CDAB邊的高,點Ax軸上,點By軸上,點C在第一象限,若A從原點出發(fā),沿x軸向右以每秒1個單位長的速度運動,則點B隨之沿y軸下滑,并帶動ABC在平面內滑動,設運動時間為t秒,當B到達原點時停止運動

(1)連接OC,線段OC的長隨t的變化而變化,當OC最大時,t____;

(2)當ABC的邊與坐標軸平行時,t____。

查看答案和解析>>

同步練習冊答案