【題目】將圖1中的矩形ABCD沿對角線AC剪開,再把△ABC沿著AD方向平移,得到圖2中的△A′BC′.
(1)在圖2中,除△ADC與△C′BA′全等外,請寫出其他2組全等三角形;① ;② ;
(2)請選擇(1)中的一組全等三角形加以證明.
【答案】(1)△AA′E≌△C′CF;△A′DF≌△CBE;(2)見解析.
【解析】
(1)依據(jù)圖形即可得到2組全等三角形:①△AA′E≌△C′CF;②△A′DF≌△CBE;
(2)依據(jù)平移的性質(zhì)以及矩形的性質(zhì),即可得到判定全等三角形的條件.
解:(1)由圖可得,①△AA′E≌△C′CF;②△A′DF≌△CBE;
故答案為:△AA′E≌△C′CF;△A′DF≌△CBE;
(2)選△AA′E≌△C′CF,證明如下:
由平移性質(zhì),得AA′=C′C,
由矩形性質(zhì),得∠A=∠C′,∠AA′E=∠C′CF=90°,
∴△AA′E≌△C′CF(ASA).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某籃球隊在一次聯(lián)賽中共進(jìn)行了10場比賽,已知這10場比賽的平均得分為48分,且前9場比賽的得分依次為:57,51,45,51,44,46,45,42,48.
(1)求第10場比賽的得分;
(2)直接寫出這10場比賽的中位數(shù),眾數(shù)和方差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 與 軸交 、 兩點,直線 與拋物線交于A、C兩點,其中C點的橫坐標(biāo)為2.
(1)求拋物線及直線AC的函數(shù)表達(dá)式;
(2)若P點是線段AC上的一個動點,過P點作 軸的平行線交拋物線于F點,求線段PF長度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列圖形,它是把一個三角形分別連接這個三角形三邊的中點,構(gòu)成4個小三角形,挖去中間的一個小三角形(如圖1);對剩下的三個小三角形再分別重復(fù)以上做法,…將這種做法繼續(xù)下去(如圖2,圖3…),則圖6中挖去三角形的個數(shù)為( )
A.121
B.362
C.364
D.729
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究: 如圖,直線的表達(dá)式為,與軸交于點,直線交軸于點,,與交于點,過點作軸于點,.
(1)求點的坐標(biāo);
(2)求直線的表達(dá)式;
(3)求的值;
(4)在軸上是否存在點,使得?若存在,請直接寫出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠1=∠2,則不一定能使△ABD≌△ACD的條件是 ( )
A. AB=AC B. BD=CD C. ∠B=∠C D. ∠BDA=∠CDA
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2015攀枝花)某超市銷售有甲、乙兩種商品,甲商品每件進(jìn)價10元,售價15元;乙商品每件進(jìn)價30元,售價40元.
(1)若該超市一次性購進(jìn)兩種商品共80件,且恰好用去1600元,問購進(jìn)甲、乙兩種商品各多少件?
(2)若該超市要使兩種商品共80件的購進(jìn)費用不超過1640元,且總利潤(利潤=售價﹣進(jìn)價)不少于600元.請你幫助該超市設(shè)計相應(yīng)的進(jìn)貨方案,并指出使該超市利潤最大的方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了分析九年級學(xué)生藝術(shù)考試的成績,隨機抽查了兩個班級的各5名學(xué)生的成績,它們分別是:
九(1)班:96,92,94,97,96
九(2)班:90,98,97,98,92
通過數(shù)據(jù)分析,列表如下:
(1)
(2)計算兩個班級所抽取的學(xué)生藝術(shù)成績的方差,判斷哪個班學(xué)生藝術(shù)成績比較穩(wěn)定.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com