【題目】如圖,O是△ABC的外接圓,AB為直徑,ODBCO于點(diǎn)D,交AC于點(diǎn)E,連接AD、BDCD

1)求證:ADCD;

2)若AB10OE3,求tanDBC的值.

【答案】1)見(jiàn)解析;(2tanDBC

【解析】

1)先利用圓周角定理得到∠ACB90°,再利用平行線的性質(zhì)得∠AEO90°,則根據(jù)垂徑定理得到,從而有ADCD;

2)先在RtOAE中利用勾股定理計(jì)算出AE,則根據(jù)正切的定義得到tanDAE的值,然后根據(jù)圓周角定理得到∠DAC=∠DBC,從而可確定tanDBC的值.

1證明:∵AB為直徑,

∴∠ACB90°,

ODBC

∴∠AEO=∠ACB90°,

OEAC

,

ADCD;

2)解:∵AB10,

OAOD5

DEODOE532,

RtOAE中,AE4,

tanDAE,

∵∠DAC=∠DBC,

tanDBC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】柳市樂(lè)華電器廠對(duì)一批電容器質(zhì)量抽檢情況如下表:

1)從這批電容器中任選一個(gè),是正品的概率是多少?(2)若這批電容器共生產(chǎn)了14000個(gè),其中次品大約有多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形ABCD中,ADBC,BC18DBDC15,點(diǎn)EF分別在線段BD、CD上,DEDF5AE的延長(zhǎng)線交邊BC于點(diǎn)G,AFBD于點(diǎn)N、其延長(zhǎng)線交BC的延長(zhǎng)線于點(diǎn)H

1)求證:BGCH

2)設(shè)ADx,ADN的面積為y,求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;

3)聯(lián)結(jié)FG,當(dāng)HFGADN相似時(shí),求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個(gè)不相等的實(shí)數(shù)根.

(1)求m的取值范圍;

(2)寫出一個(gè)滿足條件的m的值,并求此時(shí)方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某海域有A、B兩個(gè)港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船從A港口出發(fā),沿東北方向行駛一段距離后,到達(dá)位于B港口南偏東75°方向的C處,求:

(1)∠C=   °;

(2)此時(shí)刻船與B港口之間的距離CB的長(zhǎng)(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)的圖象如圖所示,對(duì)稱軸為x=1,給出下列結(jié)論:①abc<0b2>4ac;4a+2b+c<0;2a+b=0..其中正確的結(jié)論有:

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P是矩形ABCD對(duì)角線AC所在直線上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)AC重合),分別過(guò)點(diǎn)A,C向直線BP作垂線,垂足分別為點(diǎn)E,F,點(diǎn)OAC的中點(diǎn).

1)如圖1,當(dāng)點(diǎn)P與點(diǎn)O重合時(shí),請(qǐng)你判斷OEOF的數(shù)量關(guān)系;

2)當(dāng)點(diǎn)P運(yùn)動(dòng)到如圖2所示位置時(shí),請(qǐng)你在圖2中補(bǔ)全圖形并通過(guò)證明判斷(1)中的結(jié)論是否仍然成立;

3)若點(diǎn)P在射線OA上運(yùn)動(dòng),恰好使得∠OEF30°時(shí),猜想此時(shí)線段CF,AEOE之間有怎樣的數(shù)量關(guān)系,直接寫出結(jié)論不必證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們定義:如圖1,在ABC看,把AB點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<180°)得到AB',把AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)β得到AC',連接B'C'.當(dāng)α+β=180°時(shí),我們稱A'B'C'ABC旋補(bǔ)三角形”,AB'C'B'C'上的中線AD叫做ABC旋補(bǔ)中線,點(diǎn)A叫做旋補(bǔ)中心”.

特例感知:

(1)在圖2,圖3中,AB'C'ABC旋補(bǔ)三角形”,ADABC旋補(bǔ)中線”.

①如圖2,當(dāng)ABC為等邊三角形時(shí),ADBC的數(shù)量關(guān)系為AD=   BC;

②如圖3,當(dāng)∠BAC=90°,BC=8時(shí),則AD長(zhǎng)為   

猜想論證:

(2)在圖1中,當(dāng)ABC為任意三角形時(shí),猜想ADBC的數(shù)量關(guān)系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣x+2與反比例函數(shù)y=(k≠0)的圖象交于A(a,3),B(3,b)兩點(diǎn),過(guò)點(diǎn)AACx軸于點(diǎn)C,過(guò)點(diǎn)BBDx軸于點(diǎn)D.

(1)a,b的值及反比例函數(shù)的解析式;

(2)若點(diǎn)P在直線y=﹣x+2上,且SACP=SBDP,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);

(3)x軸正半軸上是否存在點(diǎn)M,使得△MAB為等腰三角形?若存在,請(qǐng)直接寫出M點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案