【題目】如圖所示,可以自由轉(zhuǎn)動的轉(zhuǎn)盤被3等分,指針落在每個扇形內(nèi)的機會均等.
(1)現(xiàn)隨機轉(zhuǎn)動轉(zhuǎn)盤一次,停止后,指針指向2的概率為 ;
(2)小明和小華利用這個轉(zhuǎn)盤做游戲,若采用下列游戲規(guī)則,你認(rèn)為對雙方公平嗎?請用列表或畫樹狀圖的方法說明理由.
【答案】(1);(2)不公平,理由見解析.
【解析】
(1)、根據(jù)概率的計算法則得出概率;(2)、首先根據(jù)列表法得出所有的情況,然后分別求出小明獲勝和小華獲勝的概率,然后得出答案.
解:(1)、根據(jù)題意得:隨機轉(zhuǎn)動轉(zhuǎn)盤一次,停止后,指針指向3的概率為;
(2)、列表得:
1 | 2 | 3 | |
1 | (1,1) | (2,1) | (3,1) |
2 | (1,2) | (2,2) | (3,2) |
3 | (1,3) | (2,3) | (3,3) |
所有等可能的情況有9種,其中兩數(shù)之積為偶數(shù)的情況有5種,之積為奇數(shù)的情況有4種,
∴P(小明獲勝)=,P(小華獲勝)=, ∵>,
∴該游戲不公平.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校九年級學(xué)生立定跳遠(yuǎn)水平,隨機抽取該年級50名學(xué)生進(jìn)行測試,并把測試成績(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.
學(xué)生立定跳遠(yuǎn)測試成績的頻數(shù)分布表
分組 | 頻數(shù) |
1.2≤x<1.6 | a |
1.6≤x<2.0 | 12 |
2.0≤x<2.4 | b |
2.4≤x<2.8 | 10 |
請根據(jù)圖表中所提供的信息,完成下列問題:
(1)表中a= ,b= ,樣本成績的中位數(shù)落在 范圍內(nèi);
(2)請把頻數(shù)分布直方圖補充完整;
(3)該校九年級共有1000名學(xué)生,估計該年級學(xué)生立定跳遠(yuǎn)成績在2.4≤x<2.8范圍內(nèi)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖有一座拋物線形拱橋,橋下面在正常水位是AB寬20m,水位上升3m就達(dá)到警戒線CD,這是水面寬度為10m。
(1)在如圖的坐標(biāo)系中求拋物線的解析式。
(2)若洪水到來時,水位以每小時0.2m的速度上升,從警戒線開始,再持續(xù)多少小時才能到拱橋頂?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,DC為⊙O的切線,DE⊥AB,垂足為點E,交⊙O于點F,弦AC交DE于點P,連接CF.
(1)求證:∠DPC=∠PCD;
(2)若AP=2,填空:
①當(dāng)∠CAB= 時,四邊形OBCF是菱形;
②當(dāng)AC=2AE時,OB= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+4與兩坐標(biāo)軸交于P,Q兩點,在線段PQ上有一動點A(點A不與P,Q重合),過點A分別作兩坐標(biāo)軸的垂線,垂足為B,C,則下列說法不正確的是( 。
A.點A的坐標(biāo)為(2,2)時,四邊形OBAC為正方形
B.在整個運動過程中,四邊形OBAC的周長保持不變
C.四邊形OBAC面積的最大值為4
D.當(dāng)四邊形OBAC的面積為3時,點A的坐標(biāo)為(1,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,為邊上一動點(點與點不重合),聯(lián)結(jié),過點作交邊于點.
(1)如圖,當(dāng)時,求的長;
(2)設(shè),求關(guān)于的函數(shù)解析式并寫出函數(shù)定義域;
(3)把沿直線翻折得,聯(lián)結(jié),當(dāng)是等腰三角形時,直接寫出的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(﹣1,0),則
①二次函數(shù)的最大值為a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④當(dāng)y>0時,﹣1<x<3,其中正確的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(發(fā)現(xiàn)問題)愛好數(shù)學(xué)的小明在做作業(yè)時碰到這樣的一道題目:
如圖1,點O為坐標(biāo)原點,⊙O的半徑為1,點A(2,0).動點B在⊙O上,連結(jié)AB,作等邊△ABC(A,B,C為順時針順序),求OC的最大值.
(解決問題)小明經(jīng)過多次的嘗試與探索,終于得到解題思路:在圖①中,連接OB,以OB為邊在OB的左側(cè)作等邊三角形BOE,連接AE.
(1)請你找出圖中與OC相等的線段,并說明理由;
(2)請直接寫出線段OC的最大值.
(遷移拓展)
(3)如圖2,BC=4,點D是以BC為直徑的半圓上不同于B、C的一個動點,以BD為邊作等邊△ABD,請求出AC的最值,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com