【題目】如圖,在△ABC中∠BAC=90°,AB=AC=2,圓A的半徑1,點(diǎn)O在BC邊上運(yùn)動(dòng)(與點(diǎn)B/C不重合),設(shè)BO=X,△AOC的面積是y.
⑴求y關(guān)于x的函數(shù)關(guān)系式及自變量的取值范圍;
⑵以點(diǎn)O位圓心,BO為半徑作圓O,求當(dāng)○O與○A相切時(shí),△AOC的面積.
【答案】(1)過(guò)點(diǎn)A作AH⊥BC于H
∵∠BAC=90°,AB=AC=∴BC=4,AH=2,
∴
即y=-x+4(0<x<4)
(2)當(dāng)點(diǎn)O與點(diǎn)H重合時(shí),圓O與圓A相交,不合題意;當(dāng)點(diǎn)O與點(diǎn)H不重合時(shí),在Rt△AOH中,
∵圓A的半徑為1,圓O的半徑為x,
∴①當(dāng)圓A與圓O外切時(shí),解得x=,=y=
②當(dāng)圓A與圓O內(nèi)切時(shí),解得x=,=y=
【解析】
(1)由∠BAC=90°,AB="AC=2",根據(jù)勾股定理即可求得BC,且∠B=∠C,然后作AM⊥BC,由S△AOC=OCAM,即可求得y關(guān)于x的函數(shù)解析式;
(2)由⊙O與⊙A外切或內(nèi)切,即可求得ON的值,繼而求得△AOC的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù) y=ax2+bx+c(a≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③ax2+bx+c=0的兩根分別為-3和1;④a-2b+c>0.其中正確的命題是( )
A. ①② B. ②③ C. ①③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC是一張等腰直角三角形紙板,∠C=90°,AC=BC=2,在這張紙板中剪出一個(gè)盡可能大的正方形稱(chēng)為第1次剪取,記所得正方形面積為S1(如圖1);在余下的Rt△ADE和Rt△BDF中,分別剪取一個(gè)盡可能大的正方形,得到兩個(gè)相同的正方形,稱(chēng)為第2次剪取,并記這兩個(gè)正方形面積和為S2(如圖2);繼續(xù)操作下去…;第2019次剪取后,余下的所有小三角形的面積之和是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)在反比例函數(shù)的圖象上,,軸于點(diǎn)C.
求反比例函數(shù)的表達(dá)式;
求的面積;
若將繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)得到點(diǎn)O、A的對(duì)應(yīng)點(diǎn)分別為、,點(diǎn)是否在反比例函數(shù)的圖象上?若在請(qǐng)直接寫(xiě)出該點(diǎn)坐標(biāo),若不在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:有一個(gè)角是其對(duì)角兩倍的圓的內(nèi)接四邊形叫做圓美四邊形,其中這個(gè)角叫做美角已知四邊形ABCD是圓美四邊形
求美角的度數(shù);
如圖1,若的半徑為,求BD的長(zhǎng);
如圖2,若CA平分,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017浙江省溫州市)如圖,矩形OABC的邊OA,OC分別在x軸、y軸上,點(diǎn)B在第一象限,點(diǎn)D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關(guān)于直線(xiàn)OD對(duì)稱(chēng)(點(diǎn)A′和A,B′和B分別對(duì)應(yīng)).若AB=1,反比例函數(shù)(k≠0)的圖象恰好經(jīng)過(guò)點(diǎn)A′,B,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,,經(jīng)過(guò)兩點(diǎn)的圓交軸于點(diǎn)(在上方),則四邊形面積的最小值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中有菱形OABC,A點(diǎn)的坐標(biāo)為(10,0),對(duì)角線(xiàn)OB、AC相交于點(diǎn)D,雙曲線(xiàn)y=(x>0)經(jīng)過(guò)點(diǎn)D,交BC的延長(zhǎng)線(xiàn)于點(diǎn)E,且OBAC=160,則點(diǎn)E的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)如圖,一小球從斜坡O點(diǎn)處拋出,球的拋出路線(xiàn)可以用二次函數(shù)y=﹣x2+4x刻畫(huà),斜坡可以用一次函數(shù)y=x刻畫(huà).
(1)請(qǐng)用配方法求二次函數(shù)圖象的最高點(diǎn)P的坐標(biāo);
(2)小球的落點(diǎn)是A,求點(diǎn)A的坐標(biāo);
(3)連接拋物線(xiàn)的最高點(diǎn)P與點(diǎn)O、A得△POA,求△POA的面積;
(4)在OA上方的拋物線(xiàn)上存在一點(diǎn)M(M與P不重合),△MOA的面積等于△POA的面積.請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com