【題目】為了緩解上學時校門口的交通壓力,某校隨機抽取了部分學生進行了調(diào)查,來了解學生的到校方式,并根據(jù)調(diào)查結(jié)果繪制了如下統(tǒng)計圖表:

根據(jù)統(tǒng)計圖所提供的信息,解答下列問題:

(1)本次抽樣調(diào)查中的樣本容量是 ,= .

(2)扇形統(tǒng)計圖中學生到校方式是步行所對應(yīng)扇形的圓心角的度數(shù)是 .

(3)若該校共有1500名學生,請根據(jù)統(tǒng)計結(jié)果估計該校到校方式為乘車的學生人數(shù);

(4)現(xiàn)從四名采取不同到校方式的學生中抽取兩名學生進行問卷調(diào)查,請你用列表或畫樹狀圖的方法,求出正好選到到校方式為騎車步行的兩名學生的概率.

【答案】1200,40;(236°;(3675人;(4 .

【解析】

1)依據(jù)其他的數(shù)據(jù),即可得到調(diào)查的樣本容量,再根據(jù)樣本容量與騎車部分的百分比即可得出m的值;
2)依據(jù)步行部分人數(shù)與樣本容量可得步行部分的百分比,即可得出步行所對應(yīng)扇形的圓心角的度數(shù);
3)用樣本估計總體的思想,即可解決問題;
4)利用樹狀圖法,然后利用概率的計算公式即可求解.

1)本次抽樣調(diào)查中的樣本容量為:50÷25%=200,m=200×20%=40
∴本次抽樣調(diào)查中的樣本容量是200,m=40
故答案為:200,40
220÷200=10%,10%×360°=36°
步行所對應(yīng)扇形的圓心角的度數(shù)為:36°;
故答案為:36°;
3乘車的學生人數(shù)的百分比為×100%=45%,
用樣本估計總體:45%×1500=675人,
故估計該校到校方式為乘車的學生人數(shù)為675人;
4)畫樹形圖得:

正好選到到校方式為騎車步行的兩名學生的概率=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某教室里日光燈的四個控制開關(guān)(分別記為A、B、C、D),每個開關(guān)分別控制一排日光燈(開關(guān)序號與日光燈的排數(shù)序號不一定一致).某天上課時,王老師在完全不知道哪個開關(guān)對應(yīng)控制哪排日光燈的情況下先后隨機按下兩個開關(guān).

(1)求王老師按下第一個開關(guān)恰好能打開第一排日光燈的概率;

(2)王老師按下兩個開關(guān)恰好能打開第一排與第三排日光燈的概率是多少?請列表格或畫樹狀圖加以分析.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形中,,把矩形沿對角線所在直線折疊,使點落在點處,于點,連接

(1)求證:;

(2)求證:是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明家16月份的用水量統(tǒng)計如圖所示,關(guān)于這組數(shù)據(jù),下列說法錯誤的是 ).

A、眾數(shù)是6 B、平均數(shù)是5 C、中位數(shù)是5 D、方差是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著新農(nóng)村的建設(shè)和舊城的改造,我們的家園越來越美麗,小明家附近廣場中央新修了一個圓形噴水池,在水池中心豎直安裝了一根高米的噴水管,它噴出的拋物線形水柱在與池中心的水平距離為米處達到最高,水柱落地處離池中心米.

(1)請你建立適當?shù)闹苯亲鴺讼担⑶蟪鏊鶔佄锞的函數(shù)解析式;

(2)求出水柱的最大高度是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在矩形中,點邊的中點出發(fā),沿著速運動,速度為每秒2個單位長度,到達點后停止運動,點上的點,,設(shè)的面積為,點運動的時間為秒,的函數(shù)關(guān)系如圖②所示.

(1)圖①中= ,= ,圖②中= .

(2)=1秒時,試判斷以為直徑的圓是否與邊相切?請說明理由:

(3)在運動過程中,將矩形沿所在直線折疊,則為何值時,折疊后頂點的對應(yīng)點落在矩形的一邊上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,中,,點上一點,連接于點F,過點于點,延長于點

1)如圖1,若點與點重合,且,求的長;

2)如圖2,連接,求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E的斜邊AB上一點,以AE為直徑的與邊BC相切于點D,交邊AC于點F,連結(jié)AD

1)求證:AD平分

2)若,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AD=5,AB=4,點EF在直線AD上,且四邊形BCFE為菱形,若線段EF的中點為點M,則線段AM的長為

查看答案和解析>>

同步練習冊答案