【題目】已知:如圖, AF平分∠BACBC⊥AF, 垂足為E,點(diǎn)D與點(diǎn)A關(guān)于點(diǎn)E對(duì)稱,PB分別與線段CF,AF相交于P,M

1)求證:AB=CD;

2)若∠BAC=2∠MPC,請(qǐng)你判斷∠F∠MCD的數(shù)量關(guān)系,并說明理由.

【答案】1)證明見解析;(2∠F=∠MCD,理由見解析.

【解析】

1)根據(jù)全等三角形的性質(zhì)和判定和線段垂直平分線性質(zhì)求出AB=AC=CD,

2)由AB=AC=CD推出∠CDA=CAD=CPM,求出∠MPF=CDM,∠PMF=BMA=CMD,在DCMPMF中根據(jù)三角形的內(nèi)角和定理求出即可.

1)∵AF平分∠BAC,BCAF,

∴∠CAE=BAE,∠AEC=AEB=90°,

ACEABE中,∵∠AEC=AEB,AE=AE,∠CAE=BAE,

∴△ACE≌△ABEASA),

AB=AC

∵∠CAE=CDE,

AMBC的垂直平分線,

CM=BM,CE=BE

∴∠CMA=BMA,

AE=ED,CEAD

AC=CD,

AB=CD;

2)∠F=MCD

理由是:∵AC=CD,

∴∠CAD=CDA

∵∠BAC=2MPC,

又∵∠BAC=2CAD,

∴∠MPC=CAD

∴∠MPC=CDA,

∴∠MPF=CDM

∴∠MPF=CDM(等角的補(bǔ)角相等),

∵∠DCM+CMD+CDM=180°,∠F+MPF+PMF=180°,

又∵∠PMF=BMA=CMD

∴∠MCD=F

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn) 經(jīng)過點(diǎn)A(﹣1,0),B(5,﹣6),C(6,0)

(1)求拋物線的解析式;

(2)如圖,在直線AB下方的拋物線上是否存在點(diǎn)P使四邊形PACB的面積最大?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;

(3)若點(diǎn)Q為拋物線的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),試指出△QAB為等腰三角形的點(diǎn)Q一共有幾個(gè)?并請(qǐng)求出其中某一個(gè)點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并用相關(guān)的思想方法解決問題.

計(jì)算:(1﹣×++1×++).

++=t,則原式=(1﹣t)(t+1tt=t+t2tt+t2=,

問題:

(1)計(jì)算:(1﹣×++1×++);

(2)解方程(x2+5x+1)(x2+5x+7)=7.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:二次函數(shù)y=ax2+bx+c的圖象如圖所示,OA=OC,則由拋物線的特征寫出如下含有a、b、c三個(gè)字母的等式或不等式:①=-1;②ac+b+1=0③abc>0;④a-b+c>0.正確的序號(hào)是______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,已知ABCD,求證:EGF=AEG+CFG

(2)如圖2,已知ABCD,AEF與∠CFE的平分線交于點(diǎn)G.猜想∠G的度數(shù)。證明你的猜想

(3)如圖3,已知ABCD,EG平分∠AEH,EH平分∠GEF,FH平分∠CFG,FG平分∠HFE,G=95°,求∠H的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的頂點(diǎn)B、Cx軸的正半軸上,反個(gè)比例函數(shù)y= k≠0)在第一象限的圖象經(jīng)過點(diǎn)Am,2)CD邊上的點(diǎn)En, ),過點(diǎn)E作直線lBDy軸于點(diǎn)F,則點(diǎn)F的坐標(biāo)是(

A. 0,- )B. 0,- )

C. 0,-3)D. (0,-

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,長(zhǎng)方形ABCD的邊ABy軸正半軸上,頂點(diǎn)A的坐標(biāo)為(0,2),設(shè)頂點(diǎn)C的坐標(biāo)為(ab).

1)頂點(diǎn)B的坐標(biāo)為  ,頂點(diǎn)D的坐標(biāo)為  (用ab表示);

2)如果將一個(gè)點(diǎn)的橫坐標(biāo)作為x的值,縱坐標(biāo)作為y的值,代入方程2x+3y12成立,就說這個(gè)點(diǎn)的坐標(biāo)是方程2x+3y12的解.已知頂點(diǎn)BD的坐標(biāo)都是方程2x+3y12的解,求a,b的值;

3)在(2)的條件下,平移長(zhǎng)方形ABCD,使點(diǎn)B移動(dòng)到點(diǎn)D,得到新的長(zhǎng)方形EDFG,

這次平移可以看成是先將長(zhǎng)方形ABCD向右平移  個(gè)單位長(zhǎng)度,再向下平移  個(gè)單位長(zhǎng)度的兩次平移;

若點(diǎn)Pm,n)是對(duì)角線BD上的一點(diǎn),且點(diǎn)P的坐標(biāo)是方程2x+3y12的解,試說明平移后點(diǎn)P的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)也是方程2x+3y12的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程

1)若此方程的一個(gè)根為1,求的值;

2)求證:不論取何實(shí)數(shù),此方程都有兩個(gè)不相等的實(shí)數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了你最喜歡的溝通方式調(diào)查問卷(每人必選且只選一種)在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問題

1)這次統(tǒng)計(jì)共抽查了________名學(xué)生;在扇形統(tǒng)計(jì)圖中表示QQ的扇形圓心角的度數(shù)為___________;

2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整

3)某天甲、乙兩名同學(xué)都想從微信QQ、電話三種溝通方式中選一種方式與對(duì)方聯(lián)系,請(qǐng)用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選擇同一種溝通方式的概率

查看答案和解析>>

同步練習(xí)冊(cè)答案